[1] Luo, S.-C., Wei, S.-M., Luo, X.-T., Yang, Q.-Q., Wong, K.-H., Cheung, P. C., & Zhang, B.-B. (2024). How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. npj Biofilms and Microbiomes, 10(1), 14. doi.org/10.1038/s41522-024-00488-7
[2] Radha, R., Raghavendra, B., Subhash, B., Rajan, J., & Narasimhadhan, A. (2023). Machine learning techniques for periodontitis and dental caries detection: A narrative review. International journal of medical informatics, 178, 105170. doi.org/10.1016/j.ijmedinf.2023.105170
[3] Akhter, M. N., Hussain, S. S., Riaz, N., & Zulfiqar, R. (2023). Using Technological Diagnostic Tools to Find Early Caries: A Systematic Review. Dinkum Journal of Medical Innovations, 2(07), 271-283. Available on: www.researchgate.net
[4] Chauhan, R. B., Shah, T. V., Shah, D. H., Gohil, T. J., Oza, A. D., Jajal, B., & Saxena, K. K. (2023). An overview of image processing for dental diagnosis. Innovation and Emerging Technologies, 10, 2330001.doi.org/10.1142/S2737599423300015
[5] Walsh, T., Macey, R., Ricketts, D., Carrasco Labra, A., Worthington, H., Sutton, A. J., Freeman, S., Glenny, A. M., Riley, P., Clarkson, J., & Cerullo, E. (2022). Enamel Caries Detection and Diagnosis: An Analysis of Systematic Reviews.
Journal of Dental Research,
101(3),261-269.
doi.org/10.1177/00220345211042795
[6] Zhu, J., Chen, Z., Zhao, J., Yu, Y., Li, X., Shi, K., Zhang, F., Yu, F., Shi, K., & Sun, Z. (2023). Artificial intelligence in the diagnosis of dental diseases on panoramic radiographs: a preliminary study. BMC Oral Health, 23(1), 358. doi.org/10.1186/s12903-023-03027-6
[7] Kühnisch, J., Meyer, O., Hesenius, M., Hickel, R., & Gruhn, V. (2021). Caries Detection on Intraoral Images Using Artificial Intelligence. Journal of Dental Research, 101, 158 - 165. doi.org/10.1177/00220345211032524
[8] Fawaz, P., El Sayegh, P., & Vannet, B. V. (2023). What is the current state of artificial intelligence applications in dentistry and orthodontics? Journal of Stomatology, Oral and Maxillofacial Surgery, 124(5), 101524. doi.org/10.1016/j.jormas.2023.101524
[9] Yoon, K., Jeong, H.-M., Kim, J.-W., Park, J.-H., & Choi, J. (2024). AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation. Journal of Dentistry, 141, 104821. doi.org/10.1016/j.jdent.2023.104821
[10] Qayyum, A., Tahir, A., Butt, M. A., Luke, A., Abbas, H. T., Qadir, J., Arshad, K., Assaleh, K., Imran, M. A., & Abbasi, Q. H. (2023). Dental caries detection using a semi-supervised learning approach. Scientific Reports, 13(1), 749. doi.org/10.1038/s41598-023-27808-9
[11] Chen, I. D. S., Yang, C.-M., Chen, M.-J., Chen, M.-C., Weng, R.-M., & Yeh, C.-H. (2023). Deep learning-based recognition of periodontitis and dental caries in dental x-ray images. Bioengineering, 10(8), 911. doi.org/10.3390/bioengineering10080911
[12] Batra, A. M., & Reche, A. (2023). A new era of dental care: harnessing artificial intelligence for better diagnosis and treatment. Cureus, 15(11). doi.org/10.7759/cureus.49319
[13] Anil, S., Porwal, P., & Porwal, A. (2023). Transforming dental caries diagnosis through artificial intelligence-based techniques. Cureus, 15(7).doi.org/10.7759/cureus.41694
[14] Huang, C., Wang, J., Wang, S., & Zhang, Y. (2023). A review of deep learning in dentistry. Neurocomputing, 554, 126629. doi.org/10.1016/j.neucom.2023.126629
[15] Haghanifar, A., Majdabadi, M. M., Haghanifar, S., Choi, Y., & Ko, S.-B. (2023). PaXNet: Tooth segmentation and dental caries detection in panoramic X-ray using ensemble transfer learning and capsule classifier. Multimedia Tools and Applications, 82(18), 27659-27679. doi.org/10.1007/s11042-023-14435-9
[16] Oztekin, F., Katar, O., Sadak, F., Yildirim, M., Cakar, H., Aydogan, M., Ozpolat, Z., Talo Yildirim, T., Yildirim, O., & Faust, O. (2023). An explainable deep learning model to prediction dental caries using panoramic radiograph images. Diagnostics, 13(2), 226.doi.org/10.3390/diagnostics13020226
[17] Chen, S.-L., Chen, T.-Y., Huang, Y.-C., Chen, C.-A., Chou, H.-S., Huang, Y.-Y., Lin, W.-C., Li, T.-C., Yuan, J.-J., & Abu, P. A. R. (2022). Missing teeth and restoration detection using dental panoramic radiography based on transfer learning with CNNs. IEEE Access, 10, 118654-118664. doi.org/10.1038/s41522-024-00488-7
[18] Shon, H. S., Kong, V., Park, J. S., Jang, W., Cha, E. J., Kim, S.-Y., Lee, E.-Y., Kang, T.-G., & Kim, K. A. (2022). Deep Learning Model for Classifying Periodontitis Stages on Dental Panoramic Radiography. Applied Sciences, 12(17), 8500. doi.org/10.3390/app12178500
[19] Hasnain, M. A., Ali, Z., Saeed, A., Aijaz, S., & Khurram, M. S. (2024). PDDNet: Deep Learning Based Dental Disease Classification through Panoramic Radiograph Images. VFAST Transactions on Software Engineering, 12(4), 180-198. doi.org/10.21015/vtse.v12i4.2028
[20] Son, J.-Y., Park, Y., Park, J.-Y., Kim, M.-J., & Han, D.-H. (2024). Overdiagnosis of dental caries in South Korea: a pseudo-patient study. BMC Oral Health, 24(1), 1-10. doi.org/10.1186/s12903-024-05061-4
[21] Park, W., Huh, J.-K., & Lee, J.-H. (2023). Automated deep learning for classification of dental implant radiographs using a large multi-center dataset. Scientific Reports, 13(1), 4862. doi.org/10.1038/s41598-023-32118-1
[22] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition. Available on :www.openaccess.thecvf.com
[23] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. Available on :www.openaccess.thecvf.com
[24] Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International conference on machine learning. Available on:www.proceedings.mlr
[25] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. doi.org/10.48550/arXiv.1704.04861
[26] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Available on: www.arxiv.org/pdf/2010.11929/1000
[27] Fariza, A., Asmara, R., Rojaby, M. O. F., Astuti, E. R., & Putra, R. H. (2022). Evaluation of Convolutional Neural Network for Automatic Caries Detection in Digital Radiograph Panoramic on Small Dataset. 2022 International Conference on Data and Software Engineering (ICoDSE). doi.org/ 10.1109/ICoDSE56892.2022.9972183