Batista, J., Pinto, M. F., Tavares, M., Lopes, F., Oliveira, A., & Teixeira, C. (2024). EEG epilepsy seizure prediction: the post-processing stage as a chronology. Scientific Reports, 14(1), 407.doi.org/10.1038/s41598-023-50609-z
Prasanna, J., Subathra, M. S. P., Mohammed, M. A., Damaševičius, R., Sairamya, N. J., & George, S. T. (2021). Automated epileptic seizure detection in pediatric subjects of CHB-MIT EEG database—A survey. Journal of Personalized Medicine, 11(10), 1028.doi.org/10.3390/jpm11101028
Supriya, S., Siuly, S., Wang, H., & Zhang, Y. (2021). Epilepsy detection from EEG using complex network techniques: A review. IEEE Reviews in Biomedical Engineering, 16, 292-306. doi.org/10.1109/RBME.2021.3055956
Zhang, X., Liu, J., Liang, J., Wang, D., & Sun, Y. (2024). Chaos anti-control of coexisting infinite signals and pinning synchronization of a complex-valued laser chain network. The European Physical Journal Plus, 139(1), 65. doi.org/10.1140/epjp/s13360-023-04826-0
Lashkari, S., Sheikhani, A., GOLPAYEGANI, M. R. H., Moghimi, A., & Kobravi, H. R. (2018). Topological feature extraction of nonlinear signals and trajectories and its application in EEG signals classification. Turkish Journal of Electrical Engineering and Computer Sciences, 26(3), 1329-1342. doi.org/10.3906/elk-1708-59
Dube, A. (2024). Neural dynamics in epilepsy: A paradigm shift. International Journal of Basic and Applied Physiology, 13(1), 1.Available on:www.ijbap.com
Araújo, N. S., Reyes-Garcia, S. Z., Brogin, J. A., Bueno, D. D., Cavalheiro, E. A., Scorza, C. A., & Faber, J. (2022). Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy. Plos Computational Biology,18(4),e1010027.doi.org/10.1371/journal.pcbi.1010027
Zhao, Y., Grayden, D. B., Boley, M., Liu, Y., Karoly, P. J., Cook, M. J., & Kuhlmann, L. (2024, July). Inference-based time-resolved chaos analysis of brain models: application to focal epilepsy. In 2024 27th International Conference on Information Fusion (FUSION) (pp. 1-8). IEEE. doi.org/10.23919/FUSION59988.2024.10706355
Kaur, S., Singh, S., Arun, P., Kaur, D., & Bajaj, M. (2020). Phase space reconstruction of EEG signals for classification of ADHD and control adults. Clinical EEG and neuroscience, 51(2), 102-113.doi.org/10.1177/1550059419876525
Ahamed, S. I., Rabbani, M., & Povinelli, R. J. (2023, July). A Comprehensive Survey on Detection of Non-linear Analysis Techniques for EEG Signal. In 2023 IEEE International Conference on Digital Health (ICDH) (pp. 184-194). IEEE.doi.org/10.1109/ICDH60066.2023.00034
Lau, Z. J., Pham, T., Chen, S. A., & Makowski, D. (2022). Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. European Journal of Neuroscience,56(7),50475069.doi.org/doi.org/10.1111/ejn.15800
Díaz Beltrán, L., Madan, C. R., Finke, C., Krohn, S., Di Ieva, A., & Esteban, F. J. (2024). Fractal dimension analysis in neurological disorders: an overview. The Fractal Geometry of the Brain, 313-328. doi.org/10.1007/978-3-031-47606-8_16
Patel, P., & Annavarapu, R. N. (2021). EEG-based human emotion recognition using entropy as a feature extraction measure. Brain informatics, 8(1), 20.doi.org/10.1186/s40708-021-00141-5
Zúñiga, M. A., Acero-González, Á., Restrepo-Castro, J. C., Uribe-Laverde, M. Á., Botero-Rosas, D. A., Ferreras, B. I., ... & Villa-Reyes, M. P. (2024). Is EEG Entropy a Useful Measure for Alzheimer's Disease?. Actas Espanolas de Psiquiatria, 52(3), 347.doi.org/10.62641/aep.v52i3.1632
Rieke, C., Andrzejak, R. G., Mormann, F., & Lehnertz, K. (2004). Improved statistical test for nonstationarity using recurrence time statistics. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(4), 046111. doi.org/10.1103/PhysRevE.69.046111
Perreault, P., & Avoli, M. (1992). 4-aminopyridine-induced epileptiform activity and a GABA-mediated long-lasting depolarization in the rat hippocampus. Journal of Neuroscience, 12(1), 104-115.doi.org/10.1523/JNEUROSCI.12-01-00104.1992
Babloyantz, A., & Destexhe, A. (1986). Low-dimensional chaos in an instance of epilepsy. Proceedings of the National Academy of Sciences, 83(10), 3513-3517.doi.org/10.1073/pnas.83.10.3513
Röschke, J., Fell, J., & Beckmann, P. (1995). Nonlinear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent. Psychiatry research, 56(3), 257-269.doi.org/10.1016/0165-1781(95)02562-B
Dehnavi, M. S., Dehnavi, V. S., & Shafiee, M. (2021, December). Classification of mental states of human concentration based on EEG signal. In 2021 12th International Conference on Information and Knowledge Technology (IKT) (pp. 78-82). IEEE. doi.org/10.1109/IKT54664.2021.9685731
Perrottelli, A., Giordano, G. M., Brando, F., Giuliani, L., & Mucci, A. (2021). EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. Frontiers in psychiatry, 12, 653642.doi.org/10.3389/fpsyt.2021.653642
Sunitha, R., & Sreedevi, A. (2022). Understanding the nonlinear dynamics of seizure and sleep EEG patterns generated using hierarchical chaotic neuronal network. International Journal of Computational Science and Engineering, 25(4), 399-409.doi.org/10.1504/IJCSE.2022.124563
Yakovleva, T. V., Kutepov, I. E., Karas, A. Y., Yakovlev, N. M., Dobriyan, V. V., Papkova, I. V., ... & Krysko, V. A. (2020). EEG analysis in structural focal epilepsy using the methods of nonlinear dynamics (Lyapunov exponents, Lempel–Ziv complexity, and multiscale entropy). The Scientific World Journal, 2020(1), 8407872.doi.org/10.1155/2020/8407872
Boonyakitanont, P., Lek-Uthai, A., Chomtho, K., & Songsiri, J. (2020). A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomedical Signal Processing and Control, 57, 101702.https://doi.org/10.1016/j.bspc.2019.101702
Ravi, S., S, S., Shahina, A., Ilakiyaselvan, N., & Khan, A. N. (2022). Epileptic seizure detection using convolutional neural networks and recurrence plots of EEG signals. Multimedia Tools and Applications, 81(5), 6585-6598. doi.org/10.1007/s11042-021-11608-2
Pegg, E. J., Taylor, J. R., Keller, S. S., & Mohanraj, R. (2020). Interictal structural and functional connectivity in idiopathic generalized epilepsy: A systematic review of graph theoretical studies. Epilepsy & Behavior, 106, 107013.https://doi.org/10.1016/j.yebeh.2020.107013
Yang, C., Liu, Z., Wang, Q., Wang, Q., Liu, Z., & Luan, G. (2021). Epilepsy as a dynamical disorder orchestrated by epileptogenic zone: a review. Nonlinear Dynamics, 104, 1901-1916.doi.org/10.1007/s11071-021-06420-4
Moraes, M. F. D., de Castro Medeiros, D., Mourao, F. A. G., Cancado, S. A. V., & Cota, V. R. (2021). Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy & Behavior, 121, 106838.doi.org/10.1016/j.yebeh.2019.106838
Rasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S., Kwan, P., Kuhlmann, L., ... & Razi, A. (2020). Machine learning for predicting epileptic seizures using EEG signals: A review. IEEE reviews in biomedical engineering, 14, 139-155.doi.org/10.1109/RBME.2020.3008792
Lashkari, S., Sheikhani, A., Golpayegani, M. R. H., Moghimi, A., & Kobravi, H. (2018). Detection and prediction of absence seizures based on nonlinear analysis of the EEG in Wag/Rij animal model. International Clinical Neuroscience Journal, 5(1), 21. doi.org/10.15171/icnj.2018.05
Lehnertz, K., Andrzejak, R. G., Arnhold, J., Kreuz, T., Mormann, F., Rieke, C., ... & Elger, C. E. (2001). Nonlinear EEG analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and. Journal of Clinical Neurophysiology, 18(3), 209-222.doi.org/10.1097/00004691
Herzog, A., Kube, K., Michaelis, B., de Lima, A. D., Baltz, T., & Voigt, T. (2008). Contribution of the GABA shift to the transition from structural initialization to working stage in biologically realistic networks. Neurocomputing, 71(7-9), 1134-1142.doi.org/10.1016/j.neucom.2007.11.027
Bambal, G., Çakıl, D., & Ekici, F. (2011). Models of experimental epilepsy. Journal of Clinical and Experimental Investigations, 2(1), 118-123. doi.org/10.5799/ahinjs.01.2011.01.0224
Spitzer, N. C., Kingston, P. A., Manning Jr, T. J., & Conklin, M. W. (2002). Outside and in: development of neuronal excitability. Current opinion in neurobiology, 12(3), 315-323. doi.org/10.1016/S0959-4388(02)00330-6
Torse, D. A., Khanai, R., & Desai, V. V. (2019, April). Classification of epileptic seizures using recurrence plots and machine learning techniques. In 2019 International Conference on Communication and Signal Processing (ICCSP) (pp. 0611-0615). IEEE.doi.org/10.1109/ICCSP.2019.8697989
Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment (Doctoral dissertation, Massachusetts Institute of Technology). Available on: www.hdl.handle.net/1721.1/54669
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438(5-6), 237 329. doi.org/10.1016/j.physrep.2006.11.001