[1] P. Li, Z. Xiao, X. Wang, K. Huang, Y. Huang and H. Gao, "EPtask: Deep Reinforcement Learning Based Energy-Efficient and Priority-Aware Task Scheduling for Dynamic Vehicular Edge Computing," IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 1830-1846, 2023. doi.org/10.1109/TIV.2023.3321679
[2] J. B. D. da Costa, A. M. de Souza, R. I. Meneguette, E. Cerqueira, D. Rosário, C. Sommer and L. Villas, "Mobility and Deadline-Aware Task Scheduling Mechanism for Vehicular Edge Computing," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 10, pp. 11345-11359, 2023. doi.org/10.1109/TITS.2023.3276823
[3] Y. Fan, J. Ge, S. Zhang, J. Wu and B. Luo, "Decentralized Scheduling for Concurrent Tasks in Mobile Edge Computing via Deep Reinforcement Learning," IEEE Transactions on Mobile Computing, pp. 1-15, 2023. doi.org/10.1109/TMC.2023.3266226
[4] X. He, C. You and T. Q. S. Quek, “Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement Learning Approach,” IEEE Transactions on Mobile Computing (Early Access), pp. 1-16, 2024. doi.org/10.1109/TMC.2024.3370101
[5] J. Lu, J. Yang, S. Li, Y. Li, W. Jiang and J. Dai, “A2C-DRL: Dynamic Scheduling for Stochastic Edge–Cloud Environments Using A2C and Deep Reinforcement Learning,” IEEE Internet of Things Journal, vol. 11, no. 9, pp. 16915-16927, 2024.10.1109/JIOT.2024.3366252
[6] L. Niu, X. Chen, N. Zhang, Y. Zhu, R. Yin and C. Wu, “Multiagent Meta-Reinforcement Learning for Optimized Task Scheduling in Heterogeneous Edge Computing Systems,” IEEE Internet of Things Journal, vol. 10, no. 12, pp. 10519-10531, 2023. doi.org/10.1109/JIOT.2023.3241222
[7] L. Liu, J. Feng, X. Mu, Q. Pei, D. Lan and M. Xiao, “Asynchronous Deep Reinforcement Learning for Collaborative Task Computing and On-Demand Resource Allocation in Vehicular Edge Computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 15513-15526, 2023. doi.org/10.1109/TITS.2023.3249745
[8] Z. Cao, X. Deng, S. Yue, P. Jiang, J. Ren and J. Gui, "Dependent Task Offloading in Edge Computing Using GNN and Deep Reinforcement Learning," IEEE Internet of Things Journal (Early Access), 2024. doi.org/10.1109/JIOT.2024.3374969
[9] D. Misra, “Mish: A Self Regularized Non-Monotonic Activation Function,” Arxiv, 2019. doi.org/10.48550/arXiv.1908.08681
[10] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, p. 436–444, 2015.doi.org/10.1038/nature14539
[11] N. A. Rashed, Y. H. Ali, T. A. Rashid and A. Salih, “Unraveling the Versatility and Impact of Multi-Objective Optimization: Algorithms, Applications, and Trends for Solving Complex Real-World Problems,” Arxiv, 2024. doi.org/10.48550/arXiv.2407.08754
[12] H. Anysz, A. Nicał, Ž. Stević, M. Grzegorzewski and K. Sikora, “Pareto Optimal Decisions in Multi-Criteria Decision Making Explained with Construction Cost Cases,” Symmetry , vol. 13, no. 1, 2021. doi.org/10.3390/sym13010046
[13] "Docker," Docker, [Online]. Available on: www.docker.com.
[14] “Mosquitto,” Eclipse, [Online]. Available on: www.mosquitto.org
[15] “Python,” Python, [Online]. Available on: www.python.org.
[16] J. Kim and K. Lee, "Function Bench : A Suite of Workloads for Serverless Cloud Function Service," in IEEE International Conference on Cloud Computing, Milan, Italy, 2019. doi.org/10.1109/CLOUD.2019.00091
[17] “Node-Red,” IBM, [Online]. Available on: www.nodered.org.
[18] A. Biswas and H.-C. Wang, “Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and Blockchain,” Sensors, vol. 23, no. 4, 2023. doi.org/10.3390/s23041963
[19] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang and W. Shi, “Edge Computing for Autonomous Driving: Opportunities and Challenges,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1697-1716, 2019. doi.org/10.1109/JPROC.2019.2915983
[20] A. Hazra , P. Rana , M. Adhikari and T. Amgoth , “Fog computing for next-generation Internet of Things: Fundamental, state-of-the-art and research challenges,” Computer Science Review, vol.48,2023.doi.org/10.1016/j.cosrev.2023.100549
[21] S. N. Srirama, “Distributed Edge Analytics in Edge-Fog-Cloud Continuum,” Arxiv, 2023. doi.org/10.1002/itl2.562
[22] W. Qin , H. Chen , L. Wang , Y. Xia , A. Nascita and A. Pescapè , “MCOTM: Mobility-aware computation offloading and task migration for edge computing in industrial IoT,” Future Generation Computer Systems, vol. 151, 2024. doi.org/10.1016/j.future.2023.10.004
[23] M. Ferens, D. Hortelano, I. de Miguel, R. J. Durán Barroso, J. C. Aguado and L. Ruiz, “Deep Reinforcement Learning Applied to Computation Offloading of Vehicular Applications: A Comparison,” in International Balkan Conference on Communications and Networking, Sarajevo, Bosnia and Herzegovina, 2022. doi.org/10.1109/BalkanCom55633.2022.9900545
[24] N. Yang, J. Wen, M. Zhang and M. Tang, “Multi-objective Deep Reinforcement Learning for Mobile Edge Computing,” in International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Singapore, Singapore, 2023. doi.org/10.23919/WiOpt58741.2023.10349870
[25] B. Xie and H. Cui, “Deep reinforcement learning-based dynamical task offloading for mobile edge computing,” The Journal of Supercomputing, vol. 81, 2024. doi.org/10.1007/s11227-024-06603-x