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 Abstract: 

This study presents the design and evaluation of a wearable Internet of Things (IoT)– based triage 

system to improve the prioritization of casualties during mass-casualty incidents (MCIs). The 

main objective of the research was to enhance the speed and accuracy of patient assessment while 

reducing the cognitive workload of first responders. The system was designed as an integrated 

platform combining wearable sensor nodes, a low-power long-range communication link based 

on LoRa technology, and an interactive dashboard for real-time monitoring and classification. A 

MAX30102 photoplethysmography sensor was used for continuous measurement of heart rate 

and oxygen saturation, while a LoRa-enabled transmitter based on the RFM95 module sent 

physiological data to a central gateway built around a Raspberry Pi microcontroller. The triage 

decision logic followed a semi-automated adaptation of the START protocol, implemented as a 

rule-based flow to categorize patients based on vital-sign thresholds and consciousness level. 

Physiological data were continuously analyzed, and the corresponding triage status was updated 

on a real-time interface designed to support medical staff during emergency operations. 

Experimental assessments conducted under controlled simulation scenarios confirmed that the 

proposed architecture effectively supported stable communication, timely data updates, and 

consistent triage decisions. Key findings indicated that the wearable system maintained high 

reliability, adaptability, and responsiveness in the absence of internet connectivity. Overall, the 

proposed approach demonstrates that IoT-enabled wearable technologies can substantially 

improve the operational efficiency of disaster medicine by enabling continuous patient 

monitoring and data-driven prioritization strategies in critical environments. 
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1. Introduction 

Mass casualty incidents (MCIs), whether triggered by 

natural disasters such as earthquakes and floods or human-

induced events such as large-scale traffic accidents, 

explosions, or industrial hazards, continue to pose 

significant challenges for emergency medical services and 

crisis management systems worldwide [1]. In these high-

stress and resource-constrained scenarios, the ability to 

rapidly and accurately prioritize injured individuals is vital 

to minimizing fatalities and ensuring effective allocation of 

limited medical resources [2]. Triage, the process of 

categorizing patients by injury severity and treatment 

urgency, remains a cornerstone of disaster response 

operations [3]. 

Despite its critical role, conventional triage practices, 

which are largely dependent on manual assessment, paper-

based records, and the subjective judgment of first 

responders, face substantial limitations. The unpredictable 

and chaotic nature of mass emergencies often leads to 

delays, human errors, inconsistent documentation, and a 

lack of real-time situational awareness [4]. Factors such as 

environmental conditions, insufficient numbers of trained 

personnel, psychological stress, and the absence of 

integrated data sharing further exacerbate these 

shortcomings [5]. Global standards recommend that initial 

triage assessments be completed within 60 seconds per 

patient; however, maintaining this threshold is extremely 

challenging in real-world field conditions with large 

numbers of casualties [6]. 

With the rapid advancement of digital technologies, the 

Internet of Things (IoT) has emerged as a powerful enabler 

of the reshaping of traditional healthcare and emergency 

response paradigms [7]. Wearable IoT devices, equipped 

with physiological sensors and wireless communication 

modules, offer new possibilities for continuous real-time 

monitoring of vital signs, automated data processing, and 

seamless integration with decision-support platforms [7]. 

These capabilities can significantly enhance the accuracy, 

speed, and consistency of triage operations in MCIs. 

https://foreign.umz.ac.ir/
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Automated or semi-automated triage systems can help 

alleviate the workload and cognitive burden on paramedics 

and emergency staff, allowing them to focus their efforts on 

critically injured patients [8]. By continuously monitoring 

key vital parameters such as heart rate, blood oxygen 

saturation, respiratory rate, and blood pressure, these 

systems can classify patients more objectively and alert 

command centers instantly when critical thresholds are 

reached [8]. In addition, they facilitate effective 

documentation, data archiving, and post-incident analysis, 

which are essential for improving crisis response strategies. 

The practical deployment of such systems, however, 

requires robust, modular solutions that can operate in harsh 

environments with limited infrastructure. Wireless 

protocols with long-range coverage and low power 

consumption, such as LoRa, are particularly well-suited for 

transmitting vital data in disaster zones where conventional 

networks may be unavailable or unreliable [9]. Moreover, 

integrating a portable processing unit with a user-friendly 

graphical dashboard provides responders and commanders 

with an accessible means to visualize real-time patient data 

and dynamically manage triage decisions. 

In response to these pressing needs and challenges, this 

study proposes the design, implementation, and evaluation 

of a wearable, IoT-based triage platform tailored to mass-

casualty incidents. The proposed system combines multiple 

hardware and software components, including wearable 

sensors (e.g., the MAX30102 module for heart rate and 

SpO₂ measurement), an Arduino Nano for local data 

acquisition, an RFM95 LoRa module for long-range 

wireless transmission, and a Raspberry Pi for centralized 

data processing and storage. The core triage logic and data 

handling are implemented in the Node-RED environment, 

which also provides an interactive, real-time dashboard for 

monitoring patients’ conditions and manually entering 

additional information, such as age, gender, consciousness 

level, and contamination status. 

This platform is designed to operate autonomously, with 

minimal need for direct human intervention during data 

collection and transmission. Practical features, such as 

integrated LED indicators and audio alarms, facilitate rapid 

identification of critical patients, even in low-visibility or 

chaotic field conditions. Unlike traditional systems that rely 

solely on visual tags and manual record-keeping, the 

proposed solution ensures continuous updates of patient 

status, enabling dynamic re-prioritization as their conditions 

evolve. 

The main objectives of this research are fivefold: (i) to 

develop a reliable wearable triage device leveraging IoT 

technologies; (ii) to improve the speed and precision of 

initial triage assessments compared to conventional manual 

methods; (iii) to enable structured data storage and decision 

support for real-time and retrospective analysis; (iv) to 

reduce the workload and cognitive stress on emergency 

responders by automating routine monitoring tasks; and (v) 

to experimentally validate the system’s performance 

through realistic laboratory scenarios, focusing on key 

quality-of-service metrics such as execution time, 

transmission latency, and data delivery success rate. 

Potential beneficiaries of this research include national 

emergency medical services, disaster response agencies, 

mobile hospitals, military medical units, and crisis 

management authorities. Beyond immediate operational 

deployment, the system can serve as a research and training 

platform for universities and other institutions that are 

exploring advanced smart health and digital crisis 

management solutions. 

While this study demonstrates a working prototype and 

provides valuable insights into real-world deployment, it 

also acknowledges certain limitations. These include 

constraints related to laboratory-based testing rather than 

live disaster scenarios, hardware limitations inherent in low-

cost components, and the use of simulated rather than 

clinical patient data due to ethical considerations. Despite 

these constraints, the findings provide a solid foundation for 

future research and field trials to scale up and integrate 

smart wearable triage solutions into broader emergency 

healthcare systems. 

By addressing gaps in conventional triage practices and 

demonstrating the feasibility of an IoT-based wearable 

platform for MCIs, this research contributes to ongoing 

global efforts to enhance disaster preparedness, optimize 

emergency response, and ultimately save lives. 

 

2. Related Work 

In recent years, the integration of smart sensing 

technologies and Internet of Things (IoT) architectures into 

emergency and disaster management systems has attracted 

significant research attention. Numerous studies have 

examined the challenges of efficient triage, patient 

monitoring, and data communication in large-scale disaster 

scenarios. This section reviews representative studies on 

wearable devices, electronic triage systems, smart tracking 

solutions, and communication frameworks, highlighting 

their contributions and limitations for real-time decision-

making and resource optimization during mass-casualty 

incidents (MCIs). 

In parallel with these developments, recent reviews have 

emphasized the growing importance of trustworthy and 

ethically aligned AI systems—particularly in IoT-enabled 

healthcare—highlighting the need for transparent 

algorithms, secure data pipelines, and privacy-preserving 

architectures when integrating wearable biosensors into 

clinical or emergency workflows [10]. 

One of the most prominent lines of research has focused 

on wearable triage tags and electronic triage systems. 

Čabarkapa et al. [8] proposed an electronic triage tag system 

designed to improve victim survival rates during MCIs by 

enabling real-time monitoring of vital signs, including heart 

rate, oxygen saturation, and respiratory rate. This system 

demonstrated notable improvements in accuracy and user 

satisfaction through a simulated scenario involving multiple 

casualties. Similarly, Grünerbel et al. [11] conceptualized a 

smart triage wristband integrating automated blood pressure 

measurement and movement detection. By employing semi-

automated algorithms based on the mSTART protocol and 
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machine learning techniques, their design aimed to 

minimize human error and accelerate decision-making. 

While both approaches yielded promising results under 

controlled conditions, they relied primarily on simulation or 

small-scale laboratory trials and thus require further 

validation in real-world disaster environments. 

Research by Stewart et al. [12] and Caviglia et al. [13] 

explored the broader domain of patient tracking and 

identification during disasters. Stewart and colleagues 

examined the limitations of manual tracking methods and 

emphasized the advantages of adopting RFID, barcoding, 

and Wi-Fi-based solutions for real-time information 

exchange and interoperability across emergency units. 

Caviglia et al. conducted a comprehensive review that 

highlighted critical gaps in health-sector preparedness for 

patient tracking during disasters, particularly in countries 

with fragmented health information systems. Despite 

significant technological advances, many existing solutions 

still face challenges such as infrastructure dependency, 

limited scalability, and data privacy concerns. 

These privacy- and security‑related challenges have also 

been highlighted in more recent IoT‑focused studies, 

including lightweight secure‑sensing models designed for 

Body Area Networks (BANs) operating in hostile or 

high‑risk environments. Such systems combine adaptive 

sampling, compressed sensing, and context‑bound 

encryption to reduce energy consumption and prevent signal 

tampering, underscoring the need for resilient and secure 

data flows in wearable triage platforms [14]. 

Advancements in IoT-based monitoring systems have 

further extended the potential of electronic triage. Smith 

[15] proposed integrating smart sensors, wearable devices, 

and wireless communication modules to enhance 

continuous tracking of victims' vital signs. Their study 

emphasized the importance of combining low-power 

wireless technologies—such as BLE, LoRa, and NB-IoT—

to maintain reliable connections in resource-constrained or 

damaged network conditions. Although these frameworks 

offer flexible architectures for distributed sensing and 

monitoring, their practical deployment still depends on 

reliable network connectivity and seamless interoperability 

among heterogeneous devices. 

The field has also seen research focusing on decision 

support systems (DSS) and automated triage algorithms. 

For instance, Wang et al. [16] compared multiple triage 

protocols (e.g., START, SALT, STM) commonly used in 

developed countries and highlighted their limited 

adaptability to diverse field conditions. Similarly, 

Lubkowski et al. [17] introduced a DSS for medical 

evacuation in military operations that leverages real-time 

physiological data streams and wearable sensors to support 

faster and more accurate prioritization. While these systems 

showcased the potential of integrating advanced data 

analytics with real-time sensing, they often require 

sophisticated infrastructure and trained personnel, which 

might not be feasible in chaotic, large-scale disaster settings. 

Several recent studies have explored emerging 

technologies to improve triage efficiency. For example, new 

concepts such as augmented reality–based triage tools [18], 

AI-driven remote triage algorithms [19], and distributed 

electronic triage networks [20] have been proposed to 

reduce manual workload and enhance situational awareness 

for first responders. A comparative study by Phimphisan et 

al. [21] revealed that, although electronic triage systems 

offer better organization and traceability than paper-based 

methods, both approaches achieved comparable 

classification accuracy under simulated MCI conditions. 

This finding underscores the importance of robust design, 

user training, and the integration of user-friendly interfaces 

to maximize the benefit of digital solutions. 

Despite these promising developments, several key 

challenges remain. Many existing wearable or electronic 

triage solutions have limited real-world testing in disaster 

scenarios, relying heavily on laboratory-based prototypes 

and simulations. Power consumption, device 

interoperability, secure data transmission, and the resilience 

of wireless communication networks in harsh environments 

continue to pose significant technical barriers. Furthermore, 

the lack of standardized frameworks for integrating smart 

triage systems with broader disaster management 

infrastructures often limits scalability and practical 

adoption. 

In summary, the literature demonstrates significant 

progress in developing smart triage and patient-tracking 

solutions using wearable devices, IoT communication 

modules, and automated decision-making algorithms. 

However, there remains a clear research gap regarding the 

deployment of cost-effective, scalable, and robust wearable 

triage systems that operate reliably in real disaster 

conditions with minimal reliance on existing infrastructure. 

The system proposed in this study aims to address these 

limitations by designing a modular, wearable IoT-based 

triage platform that integrates real-time vital-sign 

monitoring with low-power, long-range communication 

technologies and semi-automated classification algorithms. 

By building on the strengths of previous work and tackling 

its critical shortcomings, this research seeks to contribute a 

practical, field-ready solution to improve emergency 

response and casualty management during MCIs. 

 

3. System Design & Implementation 

This section presents the comprehensive design and 

practical implementation of the proposed IoT-based smart 

triage system for the rapid prioritization of casualties in 

mass-casualty incidents (MCIs). The design philosophy 

emphasizes modularity, long-range wireless 

communication, and real-time data acquisition and 

processing, ensuring that the system remains functional 

under harsh, resource-constrained conditions. The overall 

architecture integrates a layered hardware-software 

framework that employs wearable sensors, embedded 

microcontrollers, LoRa communication modules, edge 

computing nodes, and an interactive dashboard to support 

situational awareness and decision-making. 
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3.1. System Architecture Overview 

The system is structured around a 5-layered architecture 

that combines three main subsystems. The wearable unit 

continuously monitors key physiological parameters; the 

LoRa module ensures long-range, low-power data 

transmission; and the edge node collects, processes, and 

visualizes incoming data in real time. 

A layered architectural approach was adopted to separate 

sensing, data transmission, processing, data management, 

and application functionalities, ensuring scalability and 

fault isolation. Table 1 illustrates the high-level architecture, 

highlighting the data flow from sensors to the final user 

interface accessible to paramedics and crisis managers. 

Table 1. Functional Layers and Components of the Smart 

Triage System 

Layer Primary Function Main Components 

Sensing 

Layer 

Collecting patients’ 

vital signs 

Heart rate & SpO₂ sensor 

(MAX30102), RGB LEDs 

Data 

Transmission 

Layer  

Transmitting sensor 

data to the edge node 

LoRa communication 

module (RFM95W) 

Processing 

Layer 

Pre- and post-

transmission data 

processing 

Arduino Nano, Raspberry 

Pi 

Data 

Management 

Layer 

Storing and analyzing 

patients' health data 

InfluxDB time-series 

database 

Application 

Layer 

Presenting 

information to end 

users 

Dashboard 2 interface, 

Web-based application 

 

3.2. Wearable Sensing Unit Design 

At the core of the patient-side module is a set of 

physiological sensors designed for real-time vital sign 

monitoring with minimal invasiveness. The MAX30102 

optical sensor was selected for its dual functionality in 

measuring heart rate (HR) and peripheral capillary oxygen 

saturation (SpO₂) using photoplethysmography (PPG) [22]. 

This sensor offers high accuracy in motion-rich 

environments, which is critical for field operations [23]. 

The MAX30102 is interfaced with an Arduino Nano 

microcontroller, which handles local data acquisition, signal 

preprocessing, and periodic sampling. The Arduino Nano’s 

compact size and low power consumption make it well 

suited for integration into a portable, wearable enclosure 

that can be securely fastened to the patient’s wrist or arm. 

To extend functionality, the system design allows for the 

integration of additional modules, such as accelerometers 

(e.g., ADXL345) for detecting patient posture or movement, 

and respiratory or ECG sensors for future upgrades. 

To alert responders quickly in chaotic scenarios, the 

wearable unit includes an onboard LED indicator and an 

audio buzzer. These components are triggered by threshold 

conditions (e.g., critically low SpO₂ or abnormal HR), 

providing local alarms that supplement remote notifications. 

The hardware layout of the wearable sensor unit is 

illustrated in Figure 1. 

 

3.3. Wireless Communication Layer 

Given the unpredictable and often degraded network 

conditions during disasters, the choice of a robust, low-

power, long-range wireless protocol was a design priority. 

LoRa (Long Range) technology was selected for its ability 

to maintain reliable communication over distances 

exceeding several kilometres while consuming minimal 

energy, making it superior to conventional Wi-Fi or cellular 

solutions in this context [24]. 

The RFM95 LoRa transceiver module was integrated with 

the Arduino Nano to enable bidirectional data exchange 

between the wearable unit and the central edge node. 

Operating in the sub-GHz ISM band, the module was 

configured with an appropriate spreading factor and 

transmission power to balance coverage range and energy 

efficiency [25]. 

Each wearable node is assigned a unique identifier to 

prevent packet collisions and enable simultaneous 

monitoring of multiple casualties in the field. The LoRa 

gateway implemented on the Raspberry Pi receives the 

uplink packets and forwards the decoded data to the local 

processing environment. By adopting a star topology for 

communication, the system minimizes the need for multi-

hop relays, simplifying deployment and enhancing 

reliability. 

 

Figure 1. Physical prototype of the wearable sensor unit, 

including MAX30102 sensor, Arduino Nano, LED indicator, 

and buzzer. 

Figure 2. Raspberry Pi 4B and connected LoRa module used 

as the central edge node 
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3.4. Edge Computing and Processing Unit 

The central edge node, as illustrated in Figure 2, is built on 

a Raspberry Pi 4B and serves as a lightweight edge server 

for data collection, local processing, storage, and 

visualization. Node-RED is employed as the primary 

development framework due to its flow-based architecture, 

low computational overhead, and suitability for real-time 

decision-making in resource-constrained environments. 

 

The Raspberry Pi hosts a Node-RED server that 

orchestrates incoming LoRa-based physiological data 

streams, executes the hybrid triage decision logic, and 

updates the visualization dashboard in real time. The 

proposed triage logic is inspired by established emergency 

triage methodologies, including the START (Simple Triage 

and Rapid Treatment). It has been adapted into a semi-

automated, rule-based decision system suitable for edge 

execution [26]. 

The triage algorithm evaluates multiple physiological and 

functional indicators simultaneously, including heart rate 

(HR), blood oxygen saturation (SpO₂), respiratory rate 

(RR), blood pressure (BP), level of consciousness, body 

temperature, and the patient’s ability to walk. These 

parameters were selected for their clinical relevance to rapid 

field triage and their widespread use in standard emergency 

assessment protocols. Incoming sensor data are 

continuously compared against predefined clinical 

thresholds, enabling immediate classification of patients 

into standard triage categories. 

In the implemented system, patients are assigned to one of 

four triage priority levels (red, yellow, green, and black) 

based on rule-based threshold conditions. A patient is 

classified as red (immediate) if any critical physiological 

condition is detected, such as SpO₂ below 90%, respiratory 

rate lower than 10 or higher than 30 breaths per minute, 

systolic blood pressure equal to or below 90 mmHg, heart 

rate lower than 40 or higher than 150 beats per minute, 

unresponsiveness or response only to painful stimuli, 

inability to walk, or abnormal body temperature outside the 

range of 36–38 °C. These conditions indicate life-

threatening instability and require urgent medical 

intervention. 

The yellow (delayed) category includes patients whose 

vital signs are near critical boundaries but do not yet indicate 

immediate life-threatening conditions. This group includes 

individuals with SpO₂ levels between 90% and 94%, 

respiratory rates between 20 and 30 breaths per minute, 

heart rates between 40–60 or 100–150 beats per minute, 

systolic blood pressure above 220 mmHg, impaired 

mobility, or responsiveness limited to verbal stimuli. 

Patients in this category require close monitoring and 

prioritized treatment following stabilization of red-category 

cases. 

Patients classified as green (minor) exhibit stable 

physiological conditions, such as heart rates between 60–

100 beats per minute, SpO₂ levels above 94%, respiratory 

rates within normal limits, normal blood pressure, full 

consciousness, the ability to walk, and body temperature 

between 36.5–37.5 °C. These individuals are considered 

low priority and can tolerate delayed care without 

significant risk. 

Finally, the black (deceased) category is assigned when no 

measurable physiological parameters are detected, or when 

the patient shows no signs of responsiveness, consistent 

with standard disaster triage definitions. 

The rule-based structure of the proposed triage logic 

enables fast execution with minimal computational 

complexity, making it well-suited for real-time edge 

deployment in mass-casualty or disaster scenarios. By 

embedding clinically grounded physiological thresholds 

into the Node-RED processing flows, the system ensures 

transparency, reproducibility, and medical interpretability of 

triage decisions while maintaining compatibility with 

established international triage standards. 

All physiological data, triage decisions, and timestamps 

are stored locally in an InfluxDB time-series database 

hosted on the Raspberry Pi. This storage architecture 

supports retrospective analysis, quality assurance, and 

validation of triage outcomes, while allowing future 

refinement of thresholds based on expert feedback or 

clinical datasets. 

 

3.5. Interactive Dashboard and User Interface 

An essential aspect of the system is the user-facing 

dashboard, which displays the real-time status of all 

connected patients, as illustrated in Figure 3. Developed 

within the Node-RED framework, the dashboard provides a 

responsive web interface accessible via tablets or 

smartphones connected to the same local network. 

The dashboard presents live vital signs (HR and SpO₂), 

device connectivity status, and the current triage category. 

Authorized users can manually enter or update 

supplementary fields, including age, gender, consciousness 

level, injury type, and contamination status. Dynamic visual 

Figure 3. Triage system dashboard with real-time data 

visualization and interactive input fields 



Khodarahmi et al./ Future Research in AI & IoT, 2026, 2(1) 

6 
 

indicators—such as color-coded patient cards—help 

responders prioritize attention and interventions. 

The interface also features alert pop-ups and audio 

notifications triggered by critical conditions or loss of 

communication with a patient unit. These design elements 

aim to minimize cognitive load and streamline decision-

making under time pressure. 

 

3.6. Data Flow and Operational Scenario 

The end-to-end data flow begins with sensor data 

acquisition by the wearable unit, followed by preprocessing 

and periodic transmission via LoRa. Once the Raspberry Pi 

edge node receives the LoRa packets, Node-RED processes 

the incoming payloads, executes the triage classification 

algorithm, stores records in InfluxDB, and updates the live 

dashboard. 

This cycle repeats continuously, ensuring that responders 

receive updated patient conditions within seconds. 

Experimental validation under test scenarios showed an 

average triage logic execution time of 19.66 milliseconds, 

an average LoRa packet latency of 52.7 milliseconds, and a 

data delivery success rate of 98.4%. These results confirm 

the system’s ability to meet real-time performance 

requirements for field operations. 

 

3.7. Field Deployment and Scalability 

While the current prototype was tested under controlled 

laboratory conditions, the system’s modular architecture 

supports scaling to larger casualty counts with minimal 

reconfiguration. By adjusting the LoRa gateway parameters 

and expanding the Node-RED data flows, dozens or 

potentially hundreds of wearable units can be integrated into 

a single local triage network. 

The lack of dependency on external internet connectivity 

makes the solution deployable in remote or infrastructure-

damaged zones, aligning with the realities of disaster-prone 

regions. For large-scale operations, multiple Raspberry Pi 

nodes can be interconnected to distribute processing loads 

and ensure redundancy. 

 

4. Results 

This section presents the experimental evaluation of the 

proposed IoT-based smart triage system, focusing on 

verifying its operational performance and responsiveness 

under realistic test scenarios. Rigorous experiments and 

practical use-case scenarios were designed to assess the 

system’s key performance indicators (KPIs), including 

execution time of triage logic, end-to-end data transmission 

latency, and packet delivery ratio (PDR). These experiments 

aimed to answer the critical question of whether the system 

can reliably operate under real-world conditions that typify 

mass casualty incidents (MCIs). 

 

4.1. Test Scenarios and User Interaction Cases 

To evaluate the system's functional capabilities from a 

user-centric perspective, four representative scenarios were 

devised that mirror critical tasks medical staff must perform 

in the field. These scenarios address the core aspects of 

patient status management, field illumination, Find Patient, 

and manual data input. Each scenario was tested using the 

integrated hardware-software setup in a controlled lab 

environment that simulates operational constraints. 

 

4.1.1.Scenario 1: Automatic and Manual Triage Status 

Adjustment 

A unique feature of the system is its hybrid approach to 

triage classification. While the system autonomously 

determines the patient’s triage category using real-time 

physiological data (heart rate, SpO₂, respiration rate, and 

other inputs), medical staff retain full authority to override 

or adjust the automatically assigned status when necessary. 

The interactive dashboard presents a dedicated “Triage 

Status” panel for each patient, displaying the current status 

and enabling quick manual overrides via a dropdown menu 

with five options: Auto, Immediate, Delayed, Minor, and 

Deceased (Figure 4). When a manual change is made, the 

RGB LED on the wearable sensor unit simultaneously 

updates its color, ensuring alignment between the central 

dashboard and the field device. This capability enhances 

user control and supports more nuanced medical decisions 

in complex, high-pressure scenarios. 

 

4.1.2.Scenario 2: Wearable Unit Illumination for Low-

Light Conditions 

Field operations during nighttime or in poorly lit 

environments are common challenges in emergency 

response. To address this, the wearable sensor unit was 

equipped with an RGB LED that could be remotely 

triggered as a field light source. Through the dashboard, 

responders can activate a “Light” mode that commands the 

sensor unit to emit bright white light, aiding visibility for 

patient assessment and minor medical procedures in low-

Figure 4. Triage Algorithm Execution Time in Node-RED 

Chart 
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light settings. This feature illustrates how thoughtful 

integration of simple hardware elements can address real-

world operational gaps. 

 

4.1.3.Scenario 3: Find Patient via Audible and Visual 

Cues 

In large-scale incidents with multiple casualties, locating a 

specific patient rapidly is vital. The dashboard includes a 

“Find Patient” button for each connected device. When 

pressed, this trigger both an audible buzzer and the wearable 

unit’s LED to activate for a set duration, providing clear 

audio-visual cues to help responders quickly locate the 

intended patient even in crowded or chaotic environments. 

Real-time notifications on the dashboard further confirm 

that the alert has been successfully triggered. 

 

4.1.4.Scenario 4: Manual Input and Modification of 

Patient Demographics and Complementary Vitals 

Not all critical patient information can be captured 

automatically. The system’s dashboard allows responders to 

manually input or adjust demographic and supplementary 

physiological parameters such as approximate age, gender, 

body temperature, level of consciousness, ability to walk, 

and contamination status. Group buttons and text input 

fields were implemented to make data entry intuitive and 

minimize user errors during stressful operations. This 

capability supports flexible documentation and ensures that 

field data is as complete and up-to-date as possible. 

 

4.2. Performance Tests and Quantitative Metrics 

Beyond user interaction scenarios, technical performance 

was rigorously tested using repeatable lab experiments that 

reflect typical operational constraints, such as obstacles and 

signal interference. 

 

4.2.1.Test 1: Triage Logic Execution Time 

To assess the system’s ability to process physiological data 

in real time, the execution time of the triage algorithm 

implemented in Node-RED was measured. A dataset of 100 

raw data samples (HR and SpO₂) was streamed to the edge 

node. For each data point, timestamps were recorded at 

entry and upon output of the triage decision. The mean 

execution time was found to be 19.66 milliseconds, with a 

range between 15 ms and 32 ms (Figure 5). These results 

demonstrate that the decision-making logic consistently 

delivers near-instantaneous responses, which is critical for 

time-sensitive emergency care. 

 

4.2.2.Test 2: End-to-End Latency Measurement 

A key determinant of system usability is the time it takes 

for sensor data to traverse from the wearable unit to the 

dashboard and back if acknowledgments or control 

commands are issued. The round-trip time (RTT) was 

measured using timestamp pairs recorded on both the sensor 

node and the central unit. The one-way latency was 

approximated by halving the RTT, resulting in an average 

transmission delay of 52.735 milliseconds, with minimal 

variance across test runs (Figure 6). This low latency aligns 

well with the operational requirements for near-real-time 

patient monitoring in dynamic crisis environments. 

 

4.2.3.Test 3: Packet Delivery Ratio (PDR) 

Reliability in wireless communication is vital for IoT 

systems deployed in unpredictable field settings. To 

evaluate this, 1,000 sequential packets were transmitted 

from the wearable sensor via LoRa to the Raspberry Pi 

gateway. Packet IDs enabled precise tracking of lost 

messages. The analysis showed that 984 of 1,000 packets 

were successfully delivered, yielding a robust PDR of 

98.4%. This high success rate, despite signal obstacles and 

indoor barriers, indicates that the chosen communication 

framework is resilient and dependable for practical 

deployments. 

 

4.3. Summary of Experimental Findings 

The combined results of the scenario-based evaluations 

and quantitative tests confirm that the proposed smart triage 

system performs reliably and efficiently under realistic 

constraints. The hybrid triage logic supports both automated 

classification and human oversight; the LoRa 

communication layer demonstrates low latency and high 

reliability; and the dashboard offers flexible, user-friendly 

interfaces for real-time interaction and manual input. 

 

5. Discussion 

The experimental results presented in this study 

demonstrate that the proposed IoT‑enabled smart triage 

system performs reliably across multiple operational 

dimensions, including real‑time physiological data 

processing, robust wireless communication, and effective 

user interaction. Interpreting these findings in the broader 

context of emergency response highlights several important 

Figure 5. Hybrid Triage Control Interface 
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implications for both system deployment and future 

development. 

First, the system’s hybrid triage logic—combining 

automated decision-making with manual override—proved 

effective during scenario-based evaluations. Unlike existing 

electronic triage solutions that rely solely on rigid 

algorithms or completely manual classification, the 

proposed approach provides flexibility for first responders 

while maintaining consistent decision support. The ability 

to record manual overrides also establishes a valuable 

dataset for iterative refinement of the classification rules. 

Second, the measured performance metrics further confirm 

the system’s suitability for field deployment. An average 

execution time of under 20 milliseconds and an end-to-end 

latency of below 55 milliseconds enable near-instant 

processing and visualization of patient data. The LoRa-

based communication layer demonstrated strong resilience, 

achieving a 98.4% packet delivery ratio, which is 

particularly advantageous in environments with degraded 

infrastructure. 

Another noteworthy finding relates to system usability. 

The dashboard’s user-centered interface—featuring 

grouped commands, intuitive visual cues, and minimized 

operational complexity—reduced cognitive load during 

simulated emergency tasks. This supports the system’s 

potential for practical adoption in high‑stress scenarios 

where clarity and speed are critical. 

Overall, the results indicate that the prototype is 

well‑aligned with the operational needs of mass-casualty 

triage. However, further analysis of limitations and 

directions for future enhancement is necessary to assess its 

readiness for real‑world deployment fully. 

 

5.1. Limitations and Future Work  

Although the system demonstrates strong technical 

performance and practical usability, several limitations must 

be acknowledged. 

A primary limitation concerns the evaluation environment. 

All tests were conducted indoors under controlled 

conditions, with fixed distances and moderate levels of 

signal obstruction. Real-world disaster scenarios involve 

dynamic and unpredictable factors, including severe 

weather, complex physical barriers, electromagnetic 

interference, and the simultaneous operation of multiple 

triage units. These conditions may negatively affect wireless 

reliability, sensor performance, and overall responsiveness. 

Another limitation is the use of simulated physiological 

data rather than clinical measurements. While this enabled 

safe, repeatable testing, it precludes direct assessment of 

medical accuracy in real-time emergency situations. 

Validating the system using actual clinical datasets—while 

adhering to ethical research protocols—will be essential to 

confirm its effectiveness for real-world patient monitoring. 

Additionally, the current triage algorithm is rule‑based, 

which may limit its adaptability in scenarios involving 

complex or atypical physiological patterns. As the system 

scales to include more sensors or higher‑volume data 

streams, the constraints of LoRa’s low data rate may also 

become more prominent. 

Future work should therefore focus on the following 

directions: 

• Conducting extensive field trials in collaboration with 

EMS units and emergency response organizations to 

evaluate system robustness in realistic conditions. 

• Integrating additional vital sign sensors, such as blood 

pressure or ECG, to increase diagnostic depth. 

• Incorporating lightweight machine learning models for 

data‑driven, adaptive triage classification. 

• Exploring hybrid communication architectures that 

extend beyond LoRa to increase throughput where 

necessary. 

• Implementing GPS modules for accurate geolocation 

and multi-patient mapping within the dashboard. 

• Developing interfaces for linking the system with 

centralized crisis management platforms to support 

multi-agency coordination. 

• Performing long-term usability studies with diverse 

responder groups to refine the dashboard for varied 

technical skill levels. 

These enhancements will support the progression from a 

functional prototype to a robust, deployable system 

optimized for real-world mass casualty incidents.  

 

6. Conclusion 

This study presented the design, implementation, and 

evaluation of a wearable IoT-based smart triage system 

intended for rapid prioritization of patients in mass-casualty 

incidents. The system integrates physiological sensing, 

long-range wireless communication, lightweight decision-

making algorithms, and a user-centered dashboard to 

support efficient medical response in resource‑constrained 

conditions. 

Experimental results confirmed the system’s technical 

feasibility, with an average execution time of 19.66 

milliseconds, a transmission latency of approximately 52.7 

milliseconds, and a packet delivery ratio of 98.4% using 

LoRa communication. These metrics demonstrate reliable 

and low-latency performance suitable for environments 

with limited infrastructure. 

Key contributions of this research include the hybrid 

automated‑manual triage mechanism, resilient long-range 

communication without reliance on conventional internet 

connectivity, and an intuitive dashboard designed to 

minimize cognitive burden during emergencies. 

Overall, the system establishes a strong foundation for 

practical IoT‑enabled triage solutions. Continued 

Figure 6. End-to-End Transmission Latency Chart 
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development—guided by field testing, user feedback, and 

the enhancements outlined in Section 5.1—will be vital for 

transforming this prototype into a mature, deployable 

platform capable of improving emergency response and 

saving lives in crises. 
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