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Abstract:
This study presents the design and evaluation of a wearable Internet of Things (IoT)— based triage
system to improve the prioritization of casualties during mass-casualty incidents (MClIs). The
main objective of the research was to enhance the speed and accuracy of patient assessment while
reducing the cognitive workload of first responders. The system was designed as an integrated
platform combining wearable sensor nodes, a low-power long-range communication link based
on LoRa technology, and an interactive dashboard for real-time monitoring and classification. A
MAX30102 photoplethysmography sensor was used for continuous measurement of heart rate
and oxygen saturation, while a LoRa-enabled transmitter based on the RFM95 module sent
physiological data to a central gateway built around a Raspberry Pi microcontroller. The triage
decision logic followed a semi-automated adaptation of the START protocol, implemented as a
rule-based flow to categorize patients based on vital-sign thresholds and consciousness level.
Physiological data were continuously analyzed, and the corresponding triage status was updated
on a real-time interface designed to support medical staff during emergency operations.
Experimental assessments conducted under controlled simulation scenarios confirmed that the
proposed architecture effectively supported stable communication, timely data updates, and
consistent triage decisions. Key findings indicated that the wearable system maintained high
reliability, adaptability, and responsiveness in the absence of internet connectivity. Overall, the
proposed approach demonstrates that IoT-enabled wearable technologies can substantially
improve the operational efficiency of disaster medicine by enabling continuous patient
monitoring and data-driven prioritization strategies in critical environments.
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1. Introduction

Mass casualty incidents (MCIs), whether triggered by
natural disasters such as earthquakes and floods or human-

lack of real-time situational awareness [4]. Factors such as
environmental conditions, insufficient numbers of trained
personnel, psychological stress, and the absence of
integrated data sharing further exacerbate these

induced events such as large-scale traffic accidents,
explosions, or industrial hazards, continue to pose
significant challenges for emergency medical services and
crisis management systems worldwide [1]. In these high-
stress and resource-constrained scenarios, the ability to
rapidly and accurately prioritize injured individuals is vital
to minimizing fatalities and ensuring effective allocation of
limited medical resources [2]. Triage, the process of
categorizing patients by injury severity and treatment
urgency, remains a cornerstone of disaster response
operations [3].

Despite its critical role, conventional triage practices,
which are largely dependent on manual assessment, paper-
based records, and the subjective judgment of first
responders, face substantial limitations. The unpredictable
and chaotic nature of mass emergencies often leads to
delays, human errors, inconsistent documentation, and a

shortcomings [5]. Global standards recommend that initial
triage assessments be completed within 60 seconds per
patient; however, maintaining this threshold is extremely
challenging in real-world field conditions with large
numbers of casualties [6].

With the rapid advancement of digital technologies, the
Internet of Things (IoT) has emerged as a powerful enabler
of the reshaping of traditional healthcare and emergency
response paradigms [7]. Wearable IoT devices, equipped
with physiological sensors and wireless communication
modules, offer new possibilities for continuous real-time
monitoring of vital signs, automated data processing, and
seamless integration with decision-support platforms [7].
These capabilities can significantly enhance the accuracy,
speed, and consistency of triage operations in MCls.
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Automated or semi-automated triage systems can help
alleviate the workload and cognitive burden on paramedics
and emergency staff, allowing them to focus their efforts on
critically injured patients [8]. By continuously monitoring
key vital parameters such as heart rate, blood oxygen
saturation, respiratory rate, and blood pressure, these
systems can classify patients more objectively and alert
command centers instantly when critical thresholds are
reached [8]. In addition, they facilitate -effective
documentation, data archiving, and post-incident analysis,
which are essential for improving crisis response strategies.

The practical deployment of such systems, however,
requires robust, modular solutions that can operate in harsh
environments with limited infrastructure. Wireless
protocols with long-range coverage and low power
consumption, such as LoRa, are particularly well-suited for
transmitting vital data in disaster zones where conventional
networks may be unavailable or unreliable [9]. Moreover,
integrating a portable processing unit with a user-friendly
graphical dashboard provides responders and commanders
with an accessible means to visualize real-time patient data
and dynamically manage triage decisions.

In response to these pressing needs and challenges, this
study proposes the design, implementation, and evaluation
of a wearable, loT-based triage platform tailored to mass-
casualty incidents. The proposed system combines multiple
hardware and software components, including wearable
sensors (e.g., the MAX30102 module for heart rate and
SpO: measurement), an Arduino Nano for local data
acquisition, an RFM95 LoRa module for long-range
wireless transmission, and a Raspberry Pi for centralized
data processing and storage. The core triage logic and data
handling are implemented in the Node-RED environment,
which also provides an interactive, real-time dashboard for
monitoring patients’ conditions and manually entering
additional information, such as age, gender, consciousness
level, and contamination status.

This platform is designed to operate autonomously, with
minimal need for direct human intervention during data
collection and transmission. Practical features, such as
integrated LED indicators and audio alarms, facilitate rapid
identification of critical patients, even in low-visibility or
chaotic field conditions. Unlike traditional systems that rely
solely on visual tags and manual record-keeping, the
proposed solution ensures continuous updates of patient
status, enabling dynamic re-prioritization as their conditions
evolve.

The main objectives of this research are fivefold: (i) to
develop a reliable wearable triage device leveraging loT
technologies; (ii) to improve the speed and precision of
initial triage assessments compared to conventional manual
methods; (iii) to enable structured data storage and decision
support for real-time and retrospective analysis; (iv) to
reduce the workload and cognitive stress on emergency
responders by automating routine monitoring tasks; and (v)
to experimentally validate the system’s performance
through realistic laboratory scenarios, focusing on key
quality-of-service metrics such as execution time,
transmission latency, and data delivery success rate.

Potential beneficiaries of this research include national

emergency medical services, disaster response agencies,
mobile hospitals, military medical units, and crisis
management authorities. Beyond immediate operational
deployment, the system can serve as a research and training
platform for universities and other institutions that are
exploring advanced smart health and digital crisis
management solutions.

While this study demonstrates a working prototype and
provides valuable insights into real-world deployment, it
also acknowledges certain limitations. These include
constraints related to laboratory-based testing rather than
live disaster scenarios, hardware limitations inherent in low-
cost components, and the use of simulated rather than
clinical patient data due to ethical considerations. Despite
these constraints, the findings provide a solid foundation for
future research and field trials to scale up and integrate
smart wearable triage solutions into broader emergency
healthcare systems.

By addressing gaps in conventional triage practices and
demonstrating the feasibility of an loT-based wearable
platform for MCIs, this research contributes to ongoing
global efforts to enhance disaster preparedness, optimize
emergency response, and ultimately save lives.

2. Related Work

In recent years, the integration of smart sensing
technologies and Internet of Things (IoT) architectures into
emergency and disaster management systems has attracted
significant research attention. Numerous studies have
examined the challenges of efficient triage, patient
monitoring, and data communication in large-scale disaster
scenarios. This section reviews representative studies on
wearable devices, electronic triage systems, smart tracking
solutions, and communication frameworks, highlighting
their contributions and limitations for real-time decision-
making and resource optimization during mass-casualty
incidents (MClIs).

In parallel with these developments, recent reviews have
emphasized the growing importance of trustworthy and
ethically aligned Al systems—particularly in IoT-enabled
healthcare—highlighting the need for transparent
algorithms, secure data pipelines, and privacy-preserving
architectures when integrating wearable biosensors into
clinical or emergency workflows [10].

One of the most prominent lines of research has focused
on wearable triage tags and electronic triage systems.
Cabarkapa et al. [8] proposed an electronic triage tag system
designed to improve victim survival rates during MCls by
enabling real-time monitoring of vital signs, including heart
rate, oxygen saturation, and respiratory rate. This system
demonstrated notable improvements in accuracy and user
satisfaction through a simulated scenario involving multiple
casualties. Similarly, Griinerbel et al. [11] conceptualized a
smart triage wristband integrating automated blood pressure
measurement and movement detection. By employing semi-
automated algorithms based on the mSTART protocol and
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machine learning techniques, their design aimed to
minimize human error and accelerate decision-making.
While both approaches yielded promising results under
controlled conditions, they relied primarily on simulation or
small-scale laboratory trials and thus require further
validation in real-world disaster environments.

Research by Stewart et al. [12] and Caviglia et al. [13]
explored the broader domain of patient tracking and
identification during disasters. Stewart and colleagues
examined the limitations of manual tracking methods and
emphasized the advantages of adopting RFID, barcoding,
and Wi-Fi-based solutions for real-time information
exchange and interoperability across emergency units.
Caviglia et al. conducted a comprehensive review that
highlighted critical gaps in health-sector preparedness for
patient tracking during disasters, particularly in countries
with fragmented health information systems. Despite
significant technological advances, many existing solutions
still face challenges such as infrastructure dependency,
limited scalability, and data privacy concerns.

These privacy- and security-related challenges have also
been highlighted in more recent IoT-focused studies,
including lightweight secure-sensing models designed for
Body Area Networks (BANs) operating in hostile or
high-risk environments. Such systems combine adaptive
sampling, compressed sensing, and context-bound
encryption to reduce energy consumption and prevent signal
tampering, underscoring the need for resilient and secure
data flows in wearable triage platforms [14].

Advancements in loT-based monitoring systems have
further extended the potential of electronic triage. Smith
[15] proposed integrating smart sensors, wearable devices,
and wireless communication modules to enhance
continuous tracking of victims' vital signs. Their study
emphasized the importance of combining low-power
wireless technologies—such as BLE, LoRa, and NB-loT—
to maintain reliable connections in resource-constrained or
damaged network conditions. Although these frameworks
offer flexible architectures for distributed sensing and
monitoring, their practical deployment still depends on
reliable network connectivity and seamless interoperability
among heterogeneous devices.

The field has also seen research focusing on decision
support systems (DSS) and automated triage algorithms.
For instance, Wang et al. [16] compared multiple triage
protocols (e.g., START, SALT, STM) commonly used in
developed countries and highlighted their limited
adaptability to diverse field conditions. Similarly,
Lubkowski et al. [17] introduced a DSS for medical
evacuation in military operations that leverages real-time
physiological data streams and wearable sensors to support
faster and more accurate prioritization. While these systems
showcased the potential of integrating advanced data
analytics with real-time sensing, they often require
sophisticated infrastructure and trained personnel, which
might not be feasible in chaotic, large-scale disaster settings.

Several recent studies have explored emerging
technologies to improve triage efficiency. For example, new

concepts such as augmented reality—based triage tools [18],
Al-driven remote triage algorithms [19], and distributed
electronic triage networks [20] have been proposed to
reduce manual workload and enhance situational awareness
for first responders. A comparative study by Phimphisan et
al. [21] revealed that, although electronic triage systems
offer better organization and traceability than paper-based
methods, both approaches achieved comparable
classification accuracy under simulated MCI conditions.
This finding underscores the importance of robust design,
user training, and the integration of user-friendly interfaces
to maximize the benefit of digital solutions.

Despite these promising developments, several key
challenges remain. Many existing wearable or electronic
triage solutions have limited real-world testing in disaster
scenarios, relying heavily on laboratory-based prototypes
and  simulations. = Power  consumption, device
interoperability, secure data transmission, and the resilience
of wireless communication networks in harsh environments
continue to pose significant technical barriers. Furthermore,
the lack of standardized frameworks for integrating smart
triage systems with broader disaster management
infrastructures often limits scalability and practical
adoption.

In summary, the literature demonstrates significant
progress in developing smart triage and patient-tracking
solutions using wearable devices, IoT communication
modules, and automated decision-making algorithms.
However, there remains a clear research gap regarding the
deployment of cost-effective, scalable, and robust wearable
triage systems that operate reliably in real disaster
conditions with minimal reliance on existing infrastructure.
The system proposed in this study aims to address these
limitations by designing a modular, wearable IoT-based
triage platform that integrates real-time vital-sign
monitoring with low-power, long-range communication
technologies and semi-automated classification algorithms.
By building on the strengths of previous work and tackling
its critical shortcomings, this research seeks to contribute a
practical, field-ready solution to improve emergency
response and casualty management during MCls.

3. System Design & Implementation

This section presents the comprehensive design and
practical implementation of the proposed loT-based smart
triage system for the rapid prioritization of casualties in
mass-casualty incidents (MCls). The design philosophy
emphasizes modularity, long-range wireless
communication, and real-time data acquisition and
processing, ensuring that the system remains functional
under harsh, resource-constrained conditions. The overall
architecture integrates a layered hardware-software
framework that employs wearable sensors, embedded
microcontrollers, LoRa communication modules, edge
computing nodes, and an interactive dashboard to support
situational awareness and decision-making.
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3.1. System Architecture Overview

The system is structured around a 5-layered architecture
that combines three main subsystems. The wearable unit
continuously monitors key physiological parameters; the
LoRa module ensures long-range, low-power data
transmission; and the edge node collects, processes, and
visualizes incoming data in real time.

A layered architectural approach was adopted to separate
sensing, data transmission, processing, data management,
and application functionalities, ensuring scalability and
fault isolation. Table 1 illustrates the high-level architecture,
highlighting the data flow from sensors to the final user
interface accessible to paramedics and crisis managers.

Table 1. Functional Layers and Components of the Smart
Triage System

Layer Primary Function Main Components
Sensing Collecting patients’ Heart rate & SpO: sensor
Layer vital signs (MAX30102), RGB LEDs
Tran]s)litizsion Transmitting sensor LoRa communication
Layer data to the edge node module (RFM95W)
Processing Pre- and post- Arduino Nano, Raspberry
transmission data .
Layer . Pi
processing
Data . . . .
Management Storing and analyzing InfluxDB time-series
Layer patients' health data database
Application in fofgf;?gg?f end Dashboard 2 interface,
Layer Web-based application

users

3.2. Wearable Sensing Unit Design

At the core of the patient-side module is a set of
physiological sensors designed for real-time vital sign
monitoring with minimal invasiveness. The MAX30102
optical sensor was selected for its dual functionality in
measuring heart rate (HR) and peripheral capillary oxygen
saturation (SpO:) using photoplethysmography (PPG) [22].
This sensor offers high accuracy in motion-rich
environments, which is critical for field operations [23].

The MAX30102 is interfaced with an Arduino Nano
microcontroller, which handles local data acquisition, signal
preprocessing, and periodic sampling. The Arduino Nano’s
compact size and low power consumption make it well
suited for integration into a portable, wearable enclosure
that can be securely fastened to the patient’s wrist or arm.
To extend functionality, the system design allows for the
integration of additional modules, such as accelerometers
(e.g., ADXL345) for detecting patient posture or movement,
and respiratory or ECG sensors for future upgrades.

To alert responders quickly in chaotic scenarios, the
wearable unit includes an onboard LED indicator and an
audio buzzer. These components are triggered by threshold
conditions (e.g., critically low SpO: or abnormal HR),
providing local alarms that supplement remote notifications.
The hardware layout of the wearable sensor unit is
illustrated in Figure 1.

3.3. Wireless Communication Layer

Given the unpredictable and often degraded network
conditions during disasters, the choice of a robust, low-
power, long-range wireless protocol was a design priority.
LoRa (Long Range) technology was selected for its ability
to maintain reliable communication over distances
exceeding several kilometres while consuming minimal
energy, making it superior to conventional Wi-Fi or cellular
solutions in this context [24].

The RFM95 LoRa transceiver module was integrated with
the Arduino Nano to enable bidirectional data exchange
between the wearable unit and the central edge node.
Operating in the sub-GHz ISM band, the module was
configured with an appropriate spreading factor and
transmission power to balance coverage range and energy
efficiency [25].

Each wearable node is assigned a unique identifier to
prevent packet collisions and enable simultaneous
monitoring of multiple casualties in the field. The LoRa
gateway implemented on the Raspberry Pi receives the
uplink packets and forwards the decoded data to the local
processing environment. By adopting a star topology for
communication, the system minimizes the need for multi-
hop relays, simplifying deployment and enhancing
reliability.

Figure 1. Physical prototype of the wearable sensor unit,
including MAX30102 sensor, Arduino Nano, LED indicator,
and buzzer.

Figure 2. Raspberry Pi 4B and connected LoRa module used
as the central edge node
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3.4. Edge Computing and Processing Unit

The central edge node, as illustrated in Figure 2, is built on
a Raspberry Pi 4B and serves as a lightweight edge server
for data collection, local processing, storage, and
visualization. Node-RED is employed as the primary
development framework due to its flow-based architecture,
low computational overhead, and suitability for real-time
decision-making in resource-constrained environments.

The Raspberry Pi hosts a Node-RED server that
orchestrates incoming LoRa-based physiological data
streams, executes the hybrid triage decision logic, and
updates the visualization dashboard in real time. The
proposed triage logic is inspired by established emergency
triage methodologies, including the START (Simple Triage
and Rapid Treatment). It has been adapted into a semi-
automated, rule-based decision system suitable for edge
execution [26].

The triage algorithm evaluates multiple physiological and
functional indicators simultaneously, including heart rate
(HR), blood oxygen saturation (SpO:), respiratory rate
(RR), blood pressure (BP), level of consciousness, body
temperature, and the patient’s ability to walk. These
parameters were selected for their clinical relevance to rapid
field triage and their widespread use in standard emergency
assessment protocols. Incoming sensor data are
continuously compared against predefined clinical
thresholds, enabling immediate classification of patients
into standard triage categories.

In the implemented system, patients are assigned to one of
four triage priority levels (red, yellow, green, and black)
based on rule-based threshold conditions. A patient is
classified as red (immediate) if any critical physiological
condition is detected, such as SpO- below 90%, respiratory
rate lower than 10 or higher than 30 breaths per minute,
systolic blood pressure equal to or below 90 mmHg, heart
rate lower than 40 or higher than 150 beats per minute,
unresponsiveness or response only to painful stimuli,
inability to walk, or abnormal body temperature outside the
range of 36-38 °C. These conditions indicate life-
threatening instability and require urgent medical
intervention.

The yellow (delayed) category includes patients whose
vital signs are near critical boundaries but do not yet indicate
immediate life-threatening conditions. This group includes
individuals with SpO: levels between 90% and 94%,
respiratory rates between 20 and 30 breaths per minute,
heart rates between 40—60 or 100—150 beats per minute,
systolic blood pressure above 220 mmHg, impaired
mobility, or responsiveness limited to verbal stimuli.
Patients in this category require close monitoring and
prioritized treatment following stabilization of red-category
cases.

Patients classified as green (minor) exhibit stable
physiological conditions, such as heart rates between 60—
100 beats per minute, SpO: levels above 94%, respiratory

rates within normal limits, normal blood pressure, full
consciousness, the ability to walk, and body temperature
between 36.5-37.5 °C. These individuals are considered
low priority and can tolerate delayed care without
significant risk.

Finally, the black (deceased) category is assigned when no
measurable physiological parameters are detected, or when
the patient shows no signs of responsiveness, consistent
with standard disaster triage definitions.

The rule-based structure of the proposed triage logic
enables fast execution with minimal computational
complexity, making it well-suited for real-time edge
deployment in mass-casualty or disaster scenarios. By
embedding clinically grounded physiological thresholds
into the Node-RED processing flows, the system ensures
transparency, reproducibility, and medical interpretability of
triage decisions while maintaining compatibility with
established international triage standards.

All physiological data, triage decisions, and timestamps

are stored locally in an InfluxDB time-series database
hosted on the Raspberry Pi. This storage architecture
supports retrospective analysis, quality assurance, and
validation of triage outcomes, while allowing future
refinement of thresholds based on expert feedback or
clinical datasets.

3.5. Interactive Dashboard and User Interface

An essential aspect of the system is the user-facing
dashboard, which displays the real-time status of all
connected patients, as illustrated in Figure 3. Developed
within the Node-RED framework, the dashboard provides a
responsive web interface accessible via tablets or
smartphones connected to the same local network.

The dashboard presents live vital signs (HR and SpO.),
device connectivity status, and the current triage category.
Authorized users

can manually enter or update

e N

Figure 3. Triage system dashboard with real-time data
visualization and interactive input fields

supplementary fields, including age, gender, consciousness
level, injury type, and contamination status. Dynamic visual
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indicators—such as color-coded patient cards—help
responders prioritize attention and interventions.

The interface also features alert pop-ups and audio
notifications triggered by critical conditions or loss of
communication with a patient unit. These design elements
aim to minimize cognitive load and streamline decision-
making under time pressure.

3.6. Data Flow and Operational Scenario

The end-to-end data flow begins with sensor data
acquisition by the wearable unit, followed by preprocessing
and periodic transmission via LoRa. Once the Raspberry Pi
edge node receives the LoRa packets, Node-RED processes
the incoming payloads, executes the triage classification
algorithm, stores records in InfluxDB, and updates the live
dashboard.

This cycle repeats continuously, ensuring that responders
receive updated patient conditions within seconds.
Experimental validation under test scenarios showed an
average triage logic execution time of 19.66 milliseconds,
an average LoRa packet latency of 52.7 milliseconds, and a
data delivery success rate of 98.4%. These results confirm
the system’s ability to meet real-time performance
requirements for field operations.

3.7. Field Deployment and Scalability

While the current prototype was tested under controlled
laboratory conditions, the system’s modular architecture
supports scaling to larger casualty counts with minimal
reconfiguration. By adjusting the LoRa gateway parameters
and expanding the Node-RED data flows, dozens or
potentially hundreds of wearable units can be integrated into
a single local triage network.

The lack of dependency on external internet connectivity
makes the solution deployable in remote or infrastructure-
damaged zones, aligning with the realities of disaster-prone
regions. For large-scale operations, multiple Raspberry Pi
nodes can be interconnected to distribute processing loads
and ensure redundancy.

4. Results

This section presents the experimental evaluation of the
proposed loT-based smart triage system, focusing on
verifying its operational performance and responsiveness
under realistic test scenarios. Rigorous experiments and
practical use-case scenarios were designed to assess the
system’s key performance indicators (KPIs), including
execution time of triage logic, end-to-end data transmission
latency, and packet delivery ratio (PDR). These experiments
aimed to answer the critical question of whether the system
can reliably operate under real-world conditions that typify
mass casualty incidents (MCIs).

4.1. Test Scenarios and User Interaction Cases

To evaluate the system's functional capabilities from a
user-centric perspective, four representative scenarios were
devised that mirror critical tasks medical staff must perform
in the field. These scenarios address the core aspects of
patient status management, field illumination, Find Patient,
and manual data input. Each scenario was tested using the
integrated hardware-software setup in a controlled lab
environment that simulates operational constraints.

4.1.1.Scenario 1: Automatic and Manual Triage Status
Adjustment

A unique feature of the system is its hybrid approach to

Execution chart

Number of samples

=0 £ 00 2s

Execution Time (ms)

Triage Status
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@ Deceased

Figure 4. Triage Algorithm Execution Time in Node-RED
Chart

triage classification. While the system autonomously
determines the patient’s triage category using real-time
physiological data (heart rate, SpO., respiration rate, and
other inputs), medical staff retain full authority to override
or adjust the automatically assigned status when necessary.
The interactive dashboard presents a dedicated “Triage
Status” panel for each patient, displaying the current status
and enabling quick manual overrides via a dropdown menu
with five options: Auto, Immediate, Delayed, Minor, and
Deceased (Figure 4). When a manual change is made, the
RGB LED on the wearable sensor unit simultaneously
updates its color, ensuring alignment between the central
dashboard and the field device. This capability enhances
user control and supports more nuanced medical decisions
in complex, high-pressure scenarios.

4.1.2.Scenario 2: Wearable Unit Illumination for Low-
Light Conditions

Field operations during nighttime or in poorly lit
environments are common challenges in emergency
response. To address this, the wearable sensor unit was
equipped with an RGB LED that could be remotely
triggered as a field light source. Through the dashboard,
responders can activate a “Light” mode that commands the
sensor unit to emit bright white light, aiding visibility for
patient assessment and minor medical procedures in low-
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light settings. This feature illustrates how thoughtful
integration of simple hardware elements can address real-
world operational gaps.

4.1.3.Scenario 3: Find Patient via Audible and Visual
Cues

In large-scale incidents with multiple casualties, locating a
specific patient rapidly is vital. The dashboard includes a
“Find Patient” button for each connected device. When
pressed, this trigger both an audible buzzer and the wearable
unit’s LED to activate for a set duration, providing clear
audio-visual cues to help responders quickly locate the
intended patient even in crowded or chaotic environments.
Real-time notifications on the dashboard further confirm
that the alert has been successfully triggered.

4.1.4.Scenario 4: Manual Input and Modification of
Patient Demographics and Complementary Vitals

Not all critical patient information can be captured
automatically. The system’s dashboard allows responders to
manually input or adjust demographic and supplementary
physiological parameters such as approximate age, gender,
body temperature, level of consciousness, ability to walk,
and contamination status. Group buttons and text input
fields were implemented to make data entry intuitive and
minimize user errors during stressful operations. This
capability supports flexible documentation and ensures that
field data is as complete and up-to-date as possible.

4.2. Performance Tests and Quantitative Metrics

Beyond user interaction scenarios, technical performance
was rigorously tested using repeatable lab experiments that
reflect typical operational constraints, such as obstacles and
signal interference.

4.2.1.Test 1: Triage Logic Execution Time

To assess the system’s ability to process physiological data
in real time, the execution time of the triage algorithm
implemented in Node-RED was measured. A dataset of 100
raw data samples (HR and SpO:) was streamed to the edge
node. For each data point, timestamps were recorded at
entry and upon output of the triage decision. The mean
execution time was found to be 19.66 milliseconds, with a
range between 15 ms and 32 ms (Figure 5). These results
demonstrate that the decision-making logic consistently
delivers near-instantaneous responses, which is critical for
time-sensitive emergency care.

4.2.2.Test 2: End-to-End Latency Measurement

A key determinant of system usability is the time it takes
for sensor data to traverse from the wearable unit to the
dashboard and back if acknowledgments or control
commands are issued. The round-trip time (RTT) was

measured using timestamp pairs recorded on both the sensor
node and the central unit. The one-way latency was
approximated by halving the RTT, resulting in an average
transmission delay of 52.735 milliseconds, with minimal
variance across test runs (Figure 6). This low latency aligns
well with the operational requirements for near-real-time
patient monitoring in dynamic crisis environments.

Latency chart (RTT/2)

&

Number of samples
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20 22 24 @2 28 50 82 54

RTT/2 (ms)

Figure 5. Hybrid Triage Control Interface

4.2.3.Test 3: Packet Delivery Ratio (PDR)

Reliability in wireless communication is vital for IoT
systems deployed in unpredictable field settings. To
evaluate this, 1,000 sequential packets were transmitted
from the wearable sensor via LoRa to the Raspberry Pi
gateway. Packet IDs enabled precise tracking of lost
messages. The analysis showed that 984 of 1,000 packets
were successfully delivered, yielding a robust PDR of
98.4%. This high success rate, despite signal obstacles and
indoor barriers, indicates that the chosen communication
framework is resilient and dependable for practical
deployments.

4.3. Summary of Experimental Findings

The combined results of the scenario-based evaluations
and quantitative tests confirm that the proposed smart triage
system performs reliably and efficiently under realistic
constraints. The hybrid triage logic supports both automated
classification and human oversight; the LoRa
communication layer demonstrates low latency and high
reliability; and the dashboard offers flexible, user-friendly
interfaces for real-time interaction and manual input.

5. Discussion

The experimental results presented in this study
demonstrate that the proposed IoT-enabled smart triage
system performs reliably across multiple operational
dimensions, including real-time physiological data
processing, robust wireless communication, and effective
user interaction. Interpreting these findings in the broader
context of emergency response highlights several important
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implications for both system deployment and future
development.

First, the system’s hybrid triage logic—combining
automated decision-making with manual override—proved
effective during scenario-based evaluations. Unlike existing
electronic triage solutions that rely solely on rigid
algorithms or completely manual classification, the
proposed approach provides flexibility for first responders
while maintaining consistent decision support. The ability
to record manual overrides also establishes a valuable
dataset for iterative refinement of the classification rules.

Second, the measured performance metrics further confirm
the system’s suitability for field deployment. An average
execution time of under 20 milliseconds and an end-to-end
latency of below 55 milliseconds enable near-instant
processing and visualization of patient data. The LoRa-
based communication layer demonstrated strong resilience,
achieving a 98.4% packet delivery ratio, which is
particularly advantageous in environments with degraded
infrastructure.

Another noteworthy finding relates to system usability.

The dashboard’s user-centered interface—featuring
grouped commands, intuitive visual cues, and minimized
operational complexity—reduced cognitive load during
simulated emergency tasks. This supports the system’s
potential for practical adoption in high-stress scenarios
where clarity and speed are critical.

Overall, the results indicate that the prototype is

Figure 6. End-to-End Transmission Latency Chart

well-aligned with the operational needs of mass-casualty
triage. However, further analysis of limitations and
directions for future enhancement is necessary to assess its
readiness for real-world deployment fully.

5.1. Limitations and Future Work

Although the system demonstrates strong technical
performance and practical usability, several limitations must
be acknowledged.

A primary limitation concerns the evaluation environment.
All tests were conducted indoors under controlled
conditions, with fixed distances and moderate levels of
signal obstruction. Real-world disaster scenarios involve
dynamic and unpredictable factors, including severe
weather, complex physical barriers, electromagnetic
interference, and the simultaneous operation of multiple
triage units. These conditions may negatively affect wireless
reliability, sensor performance, and overall responsiveness.

Another limitation is the use of simulated physiological
data rather than clinical measurements. While this enabled
safe, repeatable testing, it precludes direct assessment of
medical accuracy in real-time emergency situations.
Validating the system using actual clinical datasets—while
adhering to ethical research protocols—will be essential to
confirm its effectiveness for real-world patient monitoring.

Additionally, the current triage algorithm is rule-based,
which may limit its adaptability in scenarios involving
complex or atypical physiological patterns. As the system
scales to include more sensors or higher-volume data
streams, the constraints of LoRa’s low data rate may also
become more prominent.

Future work should therefore focus on the following
directions:

o Conducting extensive field trials in collaboration with
EMS units and emergency response organizations to
evaluate system robustness in realistic conditions.

o Integrating additional vital sign sensors, such as blood
pressure or ECG, to increase diagnostic depth.

e Incorporating lightweight machine learning models for
data-driven, adaptive triage classification.

e Exploring hybrid communication architectures that
extend beyond LoRa to increase throughput where
necessary.

e Implementing GPS modules for accurate geolocation
and multi-patient mapping within the dashboard.

e Developing interfaces for linking the system with
centralized crisis management platforms to support
multi-agency coordination.

e Performing long-term usability studies with diverse
responder groups to refine the dashboard for varied
technical skill levels.

These enhancements will support the progression from a
functional prototype to a robust, deployable system
optimized for real-world mass casualty incidents.

6. Conclusion

This study presented the design, implementation, and
evaluation of a wearable IoT-based smart triage system
intended for rapid prioritization of patients in mass-casualty
incidents. The system integrates physiological sensing,
long-range wireless communication, lightweight decision-
making algorithms, and a user-centered dashboard to
support efficient medical response in resource-constrained
conditions.

Experimental results confirmed the system’s technical
feasibility, with an average execution time of 19.66
milliseconds, a transmission latency of approximately 52.7
milliseconds, and a packet delivery ratio of 98.4% using
LoRa communication. These metrics demonstrate reliable
and low-latency performance suitable for environments
with limited infrastructure.

Key contributions of this research include the hybrid
automated-manual triage mechanism, resilient long-range
communication without reliance on conventional internet
connectivity, and an intuitive dashboard designed to
minimize cognitive burden during emergencies.

Overall, the system establishes a strong foundation for
practical IoT-enabled triage solutions. Continued
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development—guided by field testing, user feedback, and
the enhancements outlined in Section 5.1—will be vital for
transforming this prototype into a mature, deployable
platform capable of improving emergency response and
saving lives in crises.
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