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 Abstract: 

With the rapid expansion of the Internet of Vehicles, ensuring security and trust among nodes has 

emerged as a fundamental challenge in this domain. The open, dynamic, and distributed nature 

of these networks creates an environment conducive to malicious nodes that can compromise 

communication integrity and overall system security by disseminating false or misleading 

information. This research presents a hybrid, decentralized trust management model that, through 

a multilayer approach, can effectively detect and analyze malicious nodes in connected vehicular 

networks. The proposed framework adopts a two-layer structure: in the first layer, vehicles 

compute short-term local trust scores of their peers based on interaction data using the proposed 

LTrustAssess algorithm; while in the second layer, roadside units model the network as a graph 

and employ the proposed deep learning model, TemporalGATwithLSTM, to predict and update 

the global and long-term trust scores of nodes over time. Experimental evaluation on a dataset 

generated from simulated vehicular interaction logs demonstrates that the proposed model 

achieves higher accuracy and efficiency in the distribution of trust scores and in detecting 

malicious nodes than existing baseline approaches. Overall, by providing a scalable and adaptive 

mechanism, the proposed model enhances the security, trust, and efficiency of vehicular networks 

and represents a significant step toward realizing future intelligent and safe transportation 

systems. 
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1. Introduction 

The rapid advancement of communication technologies 

has positioned Intelligent Transportation Systems as a key 

application domain of the Internet of Things and wireless 

networks. These systems significantly contribute to 

improving road safety, reducing traffic congestion, and 

enhancing the quality of life [1][2]. Vehicular Ad Hoc 

Networks (VANETs) were initially introduced to support 

such applications, enabling vehicles to exchange real-time 

information with one another and with roadside 

infrastructure [3]. However, due to their highly dynamic 

topologies, limited coverage, and heterogeneous wireless 

communication environments, VANETs face numerous 

challenges [3]. To overcome these limitations, the concept 

of the Internet of Vehicles (IoV) has emerged as an 

evolution of VANETs,  

integrating IoT technologies to enable vehicles to operate as 

intelligent, connected nodes capable of sensing, processing, 

and sharing critical traffic and environmental data [3]. 

Through Vehicle-to-Vehicle (V2V), Vehicle-to-

Infrastructure (V2I), and broader Vehicle-to-Everything 

(V2X) communications, IoV facilitates safer driving, 

efficient traffic management, and more reliable route 

planning [2][3][4][5]. Despite these advantages, IoV 

environments remain highly vulnerable to security and trust 

issues due to their open, large-scale, highly dynamic and 

distributed nature [5][6][7]. Malicious nodes can 

disseminate misinformation, disrupt communication, and 

jeopardize road safety, potentially leading to severe 

consequences, including traffic manipulation, chain 

collisions, and large-scale urban crises [7]. Such 

characteristics make IoV prone to both external attacks and 

insider threats, where authenticated nodes may inject 

falsified messages [8]. 

Therefore, one of the fundamental challenges in IoV is 

ensuring reliable communication between vehicles and 

infrastructure components such as Roadside Units (RSUs) 

[2][3][5]. The presence of malicious nodes exacerbates this 

challenge, as they may inject falsified data or deliberately 

trigger accidents, undermining the safety and stability of the 

entire transportation system [2][3][4][5]. The highly 
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dynamic topology of vehicular networks, the massive scale 

of data exchange, and the short-lived interactions between 

nodes further increase the system’s susceptibility to internal 

threats [8]. Figure 1 shows different types of 

communications in the Internet of Vehicles.  

 

Figure 1. Types of IoV Communications 

Traditional security mechanisms, such as encryption and 

authentication, are effective against external threats but 

insufficient for addressing internal attacks launched by 

compromised yet authenticated nodes. This highlights the 

need for trust management frameworks that can 

continuously evaluate the reliability of participating entities 

and detect malicious behaviors [2][3][4][5]. 

Trust management has emerged as an effective approach to 

address these issues by continuously evaluating node 

behavior, assigning trust scores, and isolating malicious 

participants from the network [2][3][4]. Unlike 

Misbehavior detection methods that identify misbehavior 

only at the data level, trust management provides a more 

comprehensive framework by considering long-term 

behavioral patterns and collective feedback from multiple 

entities [8]. However, designing robust and efficient trust 

management systems for IoV remains a significant open 

research direction, as existing solutions often lack 

comprehensive trust attributes, are limited in their 

adaptability to dynamic environments, or are vulnerable to 

trust-related attacks. 

In response, this research proposes a decentralized, AI-

enabled trust management framework that leverages deep 

neural networks for dynamic trust evaluation. By 

integrating both data-centric and node-centric perspectives, 

the proposed model aims to optimize trust score 

computation, enhance detection of malicious nodes, and 

strengthen the resilience of IoV communications. 

The primary objective of this study is to design and 

implement a trust management model that enhances the 

security and reliability of IoV communications. By enabling 

accurate and timely identification of malicious entities, this 

model ensures trustworthy data exchange among vehicles, 

thereby improving network robustness and safety [2][3][4]. 

The specific contributions of this research are as follows: 

• A two-layer trust management model (local and global) 

is proposed, combining data-centric and node-centric 

trust evaluation, and relying on consensus among RSUs 

to support decentralized decision-making. 

• A local trust evaluation algorithm (LTrustAssess) is 

introduced for computing trust scores of vehicles during 

simulation, enabling local detection of misbehavior & 

fake relayed events. 

• A domain-specific IoV trust dataset is generated by 

extracting trust-related features from vehicle 

interactions in a realistic simulation scenario, providing 

a valuable resource for future research. 

• A deep neural network model 

(TemporalGATwithLSTM) is developed to predict 

vehicles’ global trust scores over time. By leveraging 

temporal patterns and graph-based feedback, the model 

improves the accuracy of malicious node detection and 

strengthens overall network resilience. 

By combining distributed trust evaluation with deep 

learning, this research advances state-of-the-art IoV security 

solutions, offering a scalable, adaptive, and intelligent 

framework that addresses both short-term misbehavior 

detection and long-term trust assessment. 

The remainder of this paper is organized as follows: 

Section 2 introduces the background and fundamental 

concepts of the Internet of Vehicles (IoV) and trust 

management in the IoV context. Section 3 provides an 

overview of related works and existing trust management 

approaches in vehicular networks. Section 4 presents the 

proposed decentralized AI-enabled trust management 

framework, including the local trust evaluation algorithm 

and the global trust prediction model. Section 5 discusses 

the experimental setup, dataset generation, and evaluation 

metrics, followed by the analysis of results & comparison 

with other works. Finally, Section 6 concludes the paper and 

outlines potential directions for future research. 

 

2. Background 

2.1. Internet of Vehicles 

The Internet of Vehicles, as a key component of intelligent 

transportation systems and autonomous vehicle 

technologies, enables real-time data exchange and 

intelligent communication among vehicles, infrastructure, 

and other entities via wireless networks. Each vehicle, 

equipped with an On-Board Unit (OBU) and sensors, acts 

as a smart object that monitors the environment, shares 

traffic information, and enhances road safety and efficiency 

[4][5]. The Internet of Vehicles allows vehicles to 

communicate with each other and with roadside 

infrastructure by employing specialized wireless 

communication technologies to ensure low latency, high 

bandwidth, and reliable message exchange. Key standards 
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include IEEE 802.11p and the WAVE* (IEEE 1609.x) 

framework, which enable real-time communication in 

dynamic vehicular environments, and DSRC† designed for 

short-range safety-critical applications [4]. The SAE J2735 

standard further defines message structures, most notably 

the Basic Safety Message (BSM), which vehicles broadcast 

every 100 ms within their communication range to share 

kinematic data such as position, speed, heading, and 

acceleration with nearby nodes [8][9]. These messages 

extend situational awareness and support safety applications 

such as collision avoidance and cooperative driving. IoV is 

characterized by numerous dynamic entities that 

continuously exchange information in real time. The key 

characteristics of IoV can be summarized as follows 

[4][5][10][11]: 

No geographical restrictions: Vehicles can communicate 

freely within their transmission range, broadening the scope 

of potential threats. 

High entity density: The number of connected vehicles 

and other entities is very large. 

Massive data exchange: Communication volume in the 

network is extremely high. 

Dynamic topology: Due to vehicle mobility, the network 

structure and neighboring nodes change rapidly. 

Short-lived links: Connections between nodes are 

transient, often disrupted by rapid movement. 

Unreliable wireless channels: Communication is affected 

by road conditions, relative speed and direction, vehicle 

types, and environmental obstacles. 

Resource constraints: Vehicles have limited capacity to 

store long-term interactions and lack global, network-wide 

knowledge. 

Scalability challenges: The number of nodes and 

neighbors can increase significantly over time. 

While this capability enables efficient traffic management 

and intelligent transportation, it also introduces significant 

security and reliability concerns due to the highly 

interconnected nature of vehicles. The high volume of 

communication and rapid changes in network topology 

make secure and trustworthy interactions more critical than 

ever [12]. 

 

2.2. Trust Management 

The concept of trust management entails establishing 

network communication only between trusted nodes. In 

these models, nodes are typically assigned a trust score, and 

are considered malicious if their score falls below a 

predefined threshold. Trust management provides a 

framework for evaluating the reliability of network nodes, 

thereby ensuring secure and dependable interactions. It 

continuously assesses node behavior, reputation, and 

protocol adherence using trust scores, with particular 

 
* Wireless Access in Vehicular Environments 

emphasis on mitigating internal threats posed by malicious 

authenticated nodes [1][2][3][4][5]. Therefore, the trust 

management system is responsible for managing the real-

time and long-term trust of network nodes based on the 

legitimacy of messages received from other nodes or on the 

legitimacy of the nodes themselves. 

In trust management, trust represents a node’s reliance on 

another to behave as expected, encompassing both 

individual-level trust and overall system reliability [8][13]. 

Systems comprise two main entities: the trustor (the 

evaluating node) and the trustee (the evaluated node). Trust 

evolves over time based on behavior and history and is 

assessed using mechanisms that evaluate both direct 

interactions and recommendations from other nodes 

[2][3][4][5]. 

In the IoV context, trust management evaluates node 

reliability (vehicles and RSUs), validates exchanged data, 

and detects malicious nodes. Effective frameworks enable 

continuous management of short- and long-term trust based 

on message legitimacy and node behavior. Attackers may 

attempt to manipulate trust relationships or provide 

deceptive information to compromise the system; therefore, 

establishing a trust management framework to counter such 

trust-related attacks is essential to strengthening the security 

posture of IoV [2][3][4][5].  

 

2.3. Trust Management Models 

Trust management models in the Internet of Vehicles are 

generally classified into three categories: data-centric, 

entity-centric, and hybrid models [2][3][5]. 

Data-centric approach (what data is provided): These 

models focus on evaluating the accuracy and reliability of 

the content of exchanged messages, such as position, speed, 

or event warnings, to detect misbehavior or attacks related 

to data, regardless of the source of the data sender. Trust 

assessment in this approach is usually short-term and does 

not establish a long-term relationship between vehicles. A 

major limitation is the dependence on sufficient data for 

each event, while historical interactions are not utilized. 

[2][3][4][5]. 

 

Node/Entity-centric approach (who provides the data): 

These models focus on the reputation and reliability of 

individual nodes by evaluating their past behavior and 

interactions. Trust values are typically long-term and reflect 

the historical performance of nodes. However, in scenarios 

with limited interactions or short-lived communication 

links, effective trust evaluation can be challenging 

[2][3][4][5]. 

 

Hybrid Approaches: Hybrid approaches combine both 

data-centric and entity-centric evaluations to provide a more 

comprehensive assessment. They consider both the 

† Dedicated Short Range Communications 
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accuracy of received messages and the sender node's overall 

behavior over time. While hybrid models generally offer 

higher detection accuracy and robustness against a wider 

range of threats, their trust computation process is 

inherently more complex [2][4][5]. 

Figure 2. Trust Management Models 

2.4. Components of Trust Management Systems 

Trust management systems in IoV typically consist of three 

key components [14]: 

Trust Sources: This includes direct and indirect trust 

[2][4][5]. 

Direct Trust: Derived from historical direct interactions 

between nodes. Factors influencing direct trust include 

packet delivery ratio, similarity between nodes, familiarity, 

interaction duration and frequency, and timeliness of 

interactions [2][4][5][15][16]. 

Indirect Trust: Also known as recommendation-based 

trust, it is computed from the recommendations of 

neighboring nodes and considers factors such as 

confidence in neighbors, positive/negative feedback, and 

reputation [2][4][5]. 

Trust Architecture: Trust systems can be categorized as 

centralized or decentralized [2][5]. 

Centralized Models: A central trusted server collects, 

computes, and stores trust values for all vehicles. While 

simple, these models are less suitable for highly dynamic 

vehicular environments due to single points of failure and 

scalability limitations [2][3][4]. 

Decentralized Models: Multiple nodes collectively 

manage trust computation, improving scalability and 

resilience against failures, and better accommodating the 

dynamic and distributed nature of IoV networks [2][3][4]. 

Trust Computation Algorithms: Trust computation 

algorithms can be classified into traditional and learning-

based approaches [2][4][5][15][17]. 

Traditional Algorithms: Include statistical or rule-based 

methods such as weighted sum, weighted average, fuzzy 

logic, entropy, and Bayesian inference. These algorithms 

are computationally simple and fast [5][15][17]. 

Learning-Based Algorithms: Use machine learning or 

deep learning techniques to compute more accurate, 

dynamic trust scores, offering greater accuracy and 

adaptability than traditional methods [5][15][17]. 

 

2.5. Attacks on Trust Management Systems 

Due to the inherent characteristics of vehicular networks, 

IoV trust management systems are vulnerable to a variety of 

attacks by malicious nodes [18]. Common attack types 

include: 

Bad-Mouthing Attack: Malicious nodes provide false 

negative feedback about honest nodes to reduce their trust 

scores. 

Ballot-Stuffing (Good-Mouthing) Attack: Colluding 

malicious nodes provide false positive feedback to increase 

trust scores of each other. 

On-Off (ZigZag) Attack: Nodes alternate between good 

and malicious behavior to avoid detection. 

Selective Misbehavior Attack: Malicious nodes target 

only specific nodes with false messages, causing 

inconsistencies in trust evaluation. 

Self-Promoting Attack: Nodes attempt to increase their 

own trust scores by manipulating feedback without 

necessarily targeting other nodes. 

 

3. Related Works 

This section reviews prior research on trust management in 

vehicular networks, with the aim of establishing baselines 

for subsequent research. We then categorize prior studies 

based on our research contributions into two key areas: (i) 

architectures and approaches for trust management models 

in vehicular networks, focusing on decentralized and hybrid 

designs; and (ii) learning-based approaches for computing 

node trust scores, emphasizing graph-based models. 

 

3.1. Baseline Works 

Several baseline trust management models have been 

proposed in vehicular networks and have since served as 

reference approaches for subsequent studies. In [19], Xiao 

et al. (2019) introduced the IWOT-V model, which was 

inspired by the PageRank algorithm and designed to 

evaluate trust by constructing an implicit trust graph from 

dynamic interactions among vehicles. The architecture 

employed a hybrid centralized–distributed structure in 

which vehicles computed local trust values (LTVs) via 

Bayesian inference, roadside units (RSUs) collected these 

values, and a central system computed global trust values 

(GTVs) using a Vehicle Rank mechanism. Simulation 

results in a realistic urban scenario demonstrated high 

accuracy in distinguishing trustworthy from untrustworthy 

vehicles, even with up to 20% malicious nodes, which led 

to its widespread use as a reference baseline. However, the 

approach relied on a limited set of trust features, lacked 

mechanisms to counter good-mouthing and bad-mouthing 

attacks, and assumed fully trustworthy RSUs and central 

servers. Building on this, in [20] Zhang et al. (2020) 

proposed the AATMS system, which adopted a Trust Rank-

inspired strategy by emphasizing recent interactions while 
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retaining a memory of past misbehavior. Local trust was 

computed via Bayesian inference with a beta distribution 

and an adaptive forgetting factor, whereas global trust was 

computed by constructing a trust graph and applying a 

modified Trust Rank algorithm. To improve robustness, 

seed nodes were selected based on PageRank rankings 

combined with social factors, and trust propagation 

employed an adaptive decay factor to slow down sudden 

trust increases while accelerating decreases. Simulation in a 

highway scenario showed that AATMS outperformed 

IWOT-V in resisting specific attacks, including Newcomer, 

ZigZag, and Colluding. Nonetheless, AATMS still 

overlooked common attacks such as good and bad 

mouthing, was highly dependent on sufficient interactions 

between vehicles (causing delays in sparse networks or for 

newcomers), and maintained an inherently centralized 

architecture, assuming fully reliable RSUs and trusted 

authorities. Together, these baseline approaches highlight 

the importance of dynamic trust evaluation but also reveal 

limitations in scalability, feature diversity, and resilience 

against a broader range of attacks, motivating the need for 

more adaptive, decentralized, and AI-driven trust 

management frameworks in the Internet of Vehicles. 

 

3.2. Architecture & Approaches for TM Models 

Beyond baseline trust models, several studies have focused 

on designing specific trust architectures for vehicular 

networks, often integrating decentralized mechanisms, 

multi-criteria decision-making, or blockchain- and AI-based 

approaches. In [21], PuCong (2021) proposed Trust Block 

MCDM, a decentralized system in which vehicles 

periodically upload locally computed trust values of 

message senders to nearby RSUs. RSUs aggregate these 

inputs using a multi-criteria decision-making framework 

and encapsulate the resulting reputation values into blocks, 

which are then competed for inclusion in the blockchain. 

Simulation results in OMNeT++ indicated improved 

detection of falsified messages and malicious vehicles; 

however, reliance on simple statistical methods rather than 

learning-based models limited adaptability in dynamic 

environments. In [22], Zhang et al. (2021) proposed a 

blockchain-assisted AI-driven trust management 

framework where vehicles use feedforward neural networks 

to compute local trust values, which are then aggregated by 

RSUs into global trust levels (GTLs). These GTLs are 

recorded immutably on the blockchain, with cross-RSU 

consensus ensuring consistency. While SUMO-based 

simulations showed improved detection accuracy and 

recall, the approach suffered from high computational 

overhead at the vehicle level due to neural network 

execution, and the use of simple averaging for global trust 

aggregation raised concerns about adaptability to dynamic 

IoV scenarios. 

In a more advanced direction in [23], Wang et al. (2022) 

proposed a deep learning–enabled trust management 

framework coupled with blockchain. In this architecture, 

RSUs employ deep learning to assess message reliability, 

while a public blockchain is used to record traffic-related 

events. A proof-of-trust consensus mechanism further 

incentivizes vehicles with higher trust scores to participate 

as block miners, thereby integrating trust management with 

incentive structures. Although the model showed promising 

detection rates in SUMO simulations across both dense and 

sparse network settings, the blockchain component 

remained largely conceptual, with evaluations focusing 

primarily on the deep learning module. In [24], Cheong et 

al. (2024) advanced this line of work with the PBTMS 

model, which combines entity trust and path trust within a 

multilayer architecture. By analyzing message paths 

through RSUs and incorporating mechanisms such as 

marker trust and dynamically updated thresholds, PBTMS 

achieved higher accuracy, recall, and F-measure than 

IWOT-V and demonstrated resilience against MITM, Black 

Hole, and On-Off attacks. Nevertheless, its dependency on 

fully trusted RSUs and reliance on basic weighted 

aggregation limited its scalability in more decentralized IoV 

environments.  

More recently, in [16], Wang et al. (2024) presented TM-

IoV, the first multi-label dataset dedicated to trust 

management in the Internet of Vehicles. TM-IoV consists of 

96,707 recorded interactions among 79 vehicles in a 

realistic simulation of the city of Jinan, China. To capture 

the dynamic nature of vehicular trust, nine key trust-related 

parameters were extracted for each trustor–trustee pair: 

Packet Delivery Ratio, Similarity, External Similarity, 

Internal Similarity, Familiarity, External Familiarity, 

Internal Familiarity, Reward and Punishment, and Context. 

These parameters incorporate both direct and indirect 

interactions, as well as behavioral history, making the 

dataset particularly suitable for machine-learning–based 

trust analysis. Intelligent malicious nodes were also 

introduced, employing strategies such as On-Off attacks to 

evade detection. The dataset was generated using a Java-

based IoV simulator, but it was not publicly released. 

Moreover, the authors did not validate the dataset using 

machine learning or deep learning models to assess its 

reliability and effectiveness, which is a notable limitation. 

Collectively, these works underscore the growing shift 

toward decentralized, AI-integrated trust architectures. Yet, 

they also reveal persistent challenges, including scalability, 

computational overhead on vehicles, and the 

oversimplification of trust aggregation methods. 

 

3.3. Learning-Based Approaches 

With the increasing complexity of IoV and the dynamicity 

of malicious behavior, learning-based approaches have 

emerged as a powerful direction for trust management and 

misbehavior detection in the Internet of Vehicles. 

In [25], Eziama et al. (2018) extended this line of research 

by combining machine learning with deep learning in a 

trust-oriented detection model. Their hybrid approach 

modeled trust as a classification process, leveraging 

Bayesian deep neural networks to capture both probabilistic 

decision-making and generalization. While effective at 

identifying malicious nodes, the model still relied solely on 

exchanged data and did not incorporate historical behavioral 

records, thereby reducing its robustness against adaptive 
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attackers. In [26], El-Sayed et al. (2020) introduced an 

entity-based trust management framework that combines 

decision-tree classification for rule extraction with artificial 

neural networks for retraining when trust estimation is 

insufficient. Their model employed role- and distance-based 

metrics, such as Euclidean distance, and demonstrated 

superior performance compared to existing approaches. 

This work highlighted the potential of hybrid ML–based 

models but remained preliminary in its validation. 

In [27], Siddiqui et al. (2023) addressed two critical 

challenges: assigning weights to trust features and defining 

threshold trust values for detecting malicious nodes. Using 

the CRAWDAD IoT dataset (adapted for IoV), they 

designed a dynamic machine-learning–based trust-

evaluation framework. By combining unsupervised learning 

for ground-truth generation with supervised methods such 

as Subspace KNN and Subspace Discriminant, their 

framework achieved nearly perfect classification results. 

However, reliance on a non-IoV dataset raises concerns 

about generalizability to real vehicular scenarios.  In [28], 

Wang et al. (2024) introduced the MESMERIC model, 

using a machine learning model to assess trust. This model 

accounts for direct and indirect interactions and includes 

contextual information, such as vehicle type and operational 

scenario. This model was evaluated using metrics such as 

precision, recall, and F1-score and showed high accuracy 

(up to 100% in urban scenarios) in identifying malicious 

nodes. In this paper, the authors used trust-related 

parameters such as direct trust (interaction success rate, 

familiarity, similarity, reward, and punishment) and indirect 

trust (feedback from neighbors) to evaluate the model. The 

machine learning algorithms K-Nearest Neighbor and 

Random Forest were also used to assess trust. The 

achievements of this paper include high precision, recall, 

and F1-Score on the Epinions dataset. However, one 

limitation of this paper is that the Epinions dataset is used, 

which is not related to vehicular networks (it concerns trust 

in social networks). Therefore, this dataset does not cover 

the dynamic nature of IoV. 

In [29], Khan et al. (2024) combined deep neural networks 

with trust management for intelligent transportation 

systems. Their framework, trained on 150,000 samples 

including traffic patterns and sensor data, achieved 90% 

accuracy in identifying abnormal behavior. Trust scores 

were computed in the range [0,1], enabling the exclusion of 

nodes with low trust values. Despite outperforming classical 

ML algorithms such as Random Forest, SVM, and Naïve 

Bayes, the dataset used was not IoV-specific and lacked 

comprehensive trust-related parameters. Finally, in [30], 

Kushardianto et al. (2024) proposed a two-stage anomaly 

detection framework for IoV, employing Random Forest, 

LSTM, GRU, and DBN on two distinct datasets. Their 

results demonstrated improved detection performance 

compared to single-stage models, yet the approach 

remained highly dependent on data quality and introduced 

computational overhead that may limit real-time 

applicability. Moreover, trust evaluation was limited to 

data-level interactions, thereby precluding the formation of 

long-term or global trust. 

Taken together, these studies underscore the growing 

reliance on machine learning and deep learning for trust 

management and misbehavior detection in IoV. While such 

approaches have demonstrated remarkable improvements in 

accuracy and robustness, their practical deployment is 

constrained by limitations including limited dataset 

availability, limited generalizability beyond non-IoV 

environments, and the integration of long-term behavioral 

history. 

 

3.4. Graph-Based Models 

Graph-based approaches have recently been proposed for 

modeling trust relationships. By leveraging graph neural 

networks (GNNs) and related architectures, these 

approaches aim to capture both the structural and contextual 

dependencies of trust, moving beyond traditional feature-

based methods. 

In [31], Jiang et al. (2022) introduced GATrust, a novel 

framework for pairwise trust evaluation in social networks. 

While most existing methods relied heavily on graph 

convolutional networks (GCNs) and largely ignored user-

specific contextual features, GATrust combined 

multifaceted user information—including contextual data, 

topological structure, and locally formed trust relations—

into a unified model. By integrating graph attention 

networks (GAT) with GCN, the framework assigned 

adaptive attention weights to different user features and 

learned latent trust factors between trustor–trustee pairs. 

Experiments on two real-world social trust datasets 

demonstrated improved accuracy in predicting trust. 

Although developed for online social networks, GATrust 

highlights the potential of attention-based graph models for 

IoV trust management, where contextual and relational 

features are equally critical. Building on the direction in 

[32], Wang et al. (2024) proposed TrustGuard, a graph-

based trust evaluation model that incorporates temporal 

dynamics, attack resilience, and explainability. Operating in 

a decentralized architecture, TrustGuard treated trust 

interactions as temporal graphs and introduced a 

multilayered design consisting of: a snapshot input layer 

(time-based trust data), a spatial aggregation layer (defense-

aware local aggregation resilient to attacks such as fake 

node injection), a temporal aggregation layer (attention-

based learning of trust evolution), and a prediction layer for 

final trust computation. Experiments on Bitcoin-OTC and 

Epinions datasets under simulated attacks showed that 

TrustGuard outperformed state-of-the-art GNN models in 

both short- and long-term trust prediction, while remaining 

robust under adversarial conditions. Despite its success, 

adapting TrustGuard to IoV remains challenging due to the 

scarcity of real vehicular trust datasets. Most recently in 

[33], Favour et al. (2025) presented a GNN-based 

framework for malicious node detection in vehicular 

networks, marking one of the first attempts to apply deep 

graph learning directly to IoV trust management. The 

proposed architecture integrates message-passing layers, 

attention mechanisms, and readout layers for node-

embedding aggregation, supplemented by dropout and 

normalization to enhance model stability. Temporal aspects 
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of trust were incorporated through methods such as time 

encoding and RNN-based integration. While conceptually 

innovative, the study lacked detailed implementation 

descriptions and did not provide experimental results, 

leaving its effectiveness unvalidated. 

Together, these graph-based approaches demonstrate the 

potential of GNNs and attention mechanisms to advance 

trust management in IoV. They emphasize the need to 

account for contextual, structural, and temporal dimensions 

of trust while maintaining robustness against attacks. 

Nevertheless, their practical applicability in vehicular 

environments remains constrained by computational 

overhead and the limited availability of realistic IoV trust 

datasets. 

 

4. Materials and Methods 

In this section, we introduce the proposed methodology for 

trust management in the Internet of Vehicles. Connected 

vehicular networks are inherently dynamic and 

decentralized, posing significant challenges for trust and 

security [26]. This work presents a hybrid, decentralized 

trust management framework that integrates data-driven 

(message-content-based) and node-centric (behavior-based) 

evaluations to manage trust at both local and global levels. 

Unlike approaches that rely solely on recent interactions, the 

model incorporates historical behavior, reducing false 

classification of honest nodes and penalizing consistently 

misbehaving nodes. This framework employs a feedback- 

and consensus-based two-tier approach to address the 

limitations of centralized methods, including single points 

of failure and scalability issues, while providing accurate, 

dynamic, and fully decentralized trust evaluation [8]. The 

proposed model operates on a two-layer architecture: the 

local layer, deployed on vehicles, computes trust scores 

based on direct interactions and extracted relevant 

parameters such as position, speed, heading, and RSSI using 

the proposed LTrustAssess Algorithm. The global layer, 

implemented on RSUs, aggregates trust-related reports 

from vehicles and computes global trust scores using a 

proposed deep learning model, TemporalGAT with LSTM, 

combined with a consensus mechanism. So the proposed 

model is organized into three stages:  

(i) Local Trust Assessment, where vehicles evaluate peers 

based on direct interactions;  

(ii) Trust Reporting, where trust-related evidence is 

transmitted to RSUs that are in the vehicle's communication 

range;  

(iii) Global Trust Assessment, where RSUs aggregate 

reports and compute final trust scores of the nodes. 

The framework enhances both the reliability and security 

of connected vehicular networks, supporting robust 

decision-making in highly dynamic environments. 

 

4.1. Local Trust Assessment 

Local trust assessment is performed periodically by 

vehicles every 30 seconds, focusing on interactions that 

occurred within the preceding interval. The process adopts 

a hybrid approach, combining data-driven evaluation 

(analysis of received messages) and node-centric evaluation 

(assessment of sender behavior).  

In this model, Vehicles broadcast Basic Safety Messages 

every second in their communication range. This model 

assumes that vehicles are authenticated. That is, all vehicles 

are pre-registered in the network and join it using a 

certificate issued by a Certificate Authority (CA). This 

means that only authorized OBUs can send/receive safety 

messages.  

For data-driven evaluation, each Basic Safety Message 

received undergoes a set of basic checks by the receiver 

node, based on the F2MD [8] framework. These include 

both basic Plausibility (e.g., acceptable range, position, 

speed, heading, acceleration) and consistency check (e.g., 

position, speed, heading, position-speed correlation), 

computed over the last five messages received from the 

sender within the last 15 seconds. Anomalous behaviors, 

such as sudden appearance or abnormal message frequency, 

are also detected. Each check assigns a continuous score 

between 0 and 1 to the message, and the geometric mean of 

the check scores is used to calculate BsmScore, reflecting 

message trustworthiness. Different types of checks 

(plausibility & consistency) applied to each received 

message are listed in Table 1.  

Table 1. List of Plausibility & Consistency checks applied on 

the received messages 

 Checks  

Kalman Filter-Based 

Anomaly Detection 

Check 

Consistency 

Check 
PlausabilityCheck 

Kalman Position 

Consistency 

Position 

Consistency 

Proximity 

Plausibility 

Kalman Speed 

Consistency 

Speed 

Consistency 
Range Plausibility 

Kalman Position Speed 

Consistency 

Position Speed 

Consistency 

Position 

Plausibility 

KalmanPositionAcc 

Consistency 

Position Speed 

Max Consistency 
Speed Plausibility 

 
Position Heading 

Consistency 
 

In parallel, node-centric evaluation computes sender-

related trust features, including position similarity, speed 

similarity, heading similarity, familiarity (interaction 

frequency and interaction duration), packet delivery ratio, 

and event contribution. These features capture the sender’s 

behavioral consistency and reliability over time. 

The proposed LTrustAssess algorithm integrates these 

factors into a weighted scoring system with five primary 

components: Misbehavior Factor, Context Factor, 

Interaction Factor, Quality Factor, and Event Factor. The 

resulting score represents the local trust the receiver assigns 
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to the sender. Vehicles subsequently use this local 

trust score to evaluate the reliability of event-driven 

messages (WSMs) received from other node 

 

Algorithm 1: LTrustAssessAlgorithm 

    Pseudocode for Local Trust Assessment Algorithm 

Input: Data Related Features + Node Related Features (All features are between 0 - 1) 

Output: LocalTrustScore  (0-1) 

 Initialize 
   TrustScore0 = 0.7 

     W1, W2, W3, W4, W5 = (0.35, 0.30, 0.15, 0.10, 0.10) 
Data-Related Features 

       AvgBSMScore ← Avg(BSMScores) 

    AvgNormalizedRSSI ← Avg(RSSINoramalized) 

Node-Related Features 

      TotalSimilarity ← Avg(PosSimilarity, SpeedSimilarity, HeadingSimilarity)  

      Familiarity ← f(duration, ReceivedBSMCount) 

      PDR ← f(Expected Messages, ReceivedBSMCount) 

      EventCoopScore ← f(EventCoopScore, NotFakeEventRatio)  

   PDR_RSSI_Combined ←  Avg(PDR, AvgNormalizedRSSI) 

Execute 

    MisbehaviorFactor (MF) ← AvgBSMScore 

    ContextFactor (CF) ← TotalSimilarity     

    InteractionFactor  (IF) ← Familiarity 
    QualityFactor  (QF) ← PDR_RSSI_Combined  
    EventFactor (EF)  ← EventContributionScore   
    Calculate Sender Local Trust Score 

    LocalTrustScore ← (W1 * MF) + (W2 * CF) + (W3 * IF) + (W4 * QF) + (W5 * EF) 

    LocalTrustScore ← f(LocalTrustScore, dataWeight) 

 END 

 

Features used in LTrustAssess and their 

computations are as follows: 

AvgBSMScore: The average score of all BSM 

messages received from a sender in the last 30 seconds. 

Each BSM is evaluated for plausibility and consistency 

using the F2MD framework [8], identifying abnormal 

behaviors such as sudden appearance, irregular 

frequency, or message modification. 

 

Normalized RSSI: Normalized Received Signal 

Strength Indicator, representing the communication 

link quality. Higher RSSI indicates stronger 

connectivity and increases trustworthiness.  

𝑅𝑆𝑆𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
1

1 + 𝑒−0.15(𝑟𝑠𝑠𝑖+80)
 

Total Similarity: Average similarity between the 

sender and receiver in terms of position, speed, and 

heading during the last 30 seconds. 

𝑃𝑜𝑠𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑀𝑎𝑥(0,
1−𝑃𝑜𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑀𝑎𝑥 𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 𝑅𝑎𝑛𝑔𝑒
) 

𝑆𝑝𝑒𝑒𝑑𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  𝑀𝑎𝑥(0,
1−𝑆𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑀𝑎𝑥 𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 𝑆𝑝𝑒𝑒𝑑
) 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =

𝑀𝑎𝑥(0,
1−𝐻𝑒𝑎𝑑𝑖𝑛𝑔 𝐷𝑖𝑓𝑓𝑒𝑟𝑟𝑛𝑐𝑒

180
) 

 

Familiarity: Measures the degree of prior interactions 

between sender and receiver, considering the number 

of messages exchanged and the duration of interaction. 

 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝐿𝑜𝑔(1 + 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑢𝑛𝑡)

𝐿𝑜𝑔(1 + 𝑀𝑎𝑥𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑) 
 

𝐷𝑢𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐿𝑜𝑔(1 + 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

𝐿𝑜𝑔(1 + 𝑀𝑎𝑥𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 
 

𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟𝑖𝑡𝑦 = 0.3 ∗ 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 + 0.7

∗ 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑟𝑎𝑚𝑎𝑙𝑖𝑧𝑒𝑑 

Packet Delivery Ratio (PDR): Indicates 

communication reliability by comparing expected 

versus received messages over the interaction duration. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑅𝑎𝑡𝑒 + 1 

𝑃𝐷𝑅 =
𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑢𝑛𝑡

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
 

Event Contribution (EventFactor): Assesses the 

sender’s cooperation and accuracy in reporting events. 

Includes a reward/punishment mechanism that 
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penalizes incorrect event reports and rewards accurate 

contributions. 

 
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝐸𝑣𝑒𝑛𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

𝐸𝑣𝑒𝑛𝑡𝑅𝑎𝑡𝑖𝑜 =
𝐸𝑣𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑢𝑛𝑡

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠
 

𝑁𝑜𝑡𝐹𝑎𝑘𝑒𝐸𝑣𝑒𝑛𝑡𝑅𝑎𝑡𝑖𝑜 = 1 −  
𝐸𝑣𝑒𝑛𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝐴𝑠𝐹𝑎𝑘𝑒

𝐸𝑣𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑢𝑛𝑡
 

𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 = 𝑋 +  0.5 ∗ 𝐸𝑣𝑒𝑛𝑡𝑅𝑎𝑡𝑖𝑜 () 

{Where- if eventRatio < 1 then X = 0.5 and if eventRatio ≥ 1 then X = 1} 

𝐸𝑣𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟

=  
(𝐴𝑣𝑔(𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒, 𝑁𝑜𝑡𝐹𝑎𝑘𝑒𝐸𝑣𝑒𝑛𝑡𝑅𝑎𝑡𝑖𝑜) − 0.25)

1
 

Data weight: To avoid premature judgments when 

limited observations exist, a Data weight factor (based 

on ReceivedBSMCount) moderates the influence of 

freshly computed scores versus the initial/default trust 

(0.7).  With fewer messages, the algorithm favors 

cautious trust . 
 

𝐷𝑎𝑡𝑎_𝑊𝑒𝑖𝑔ℎ𝑡 = min (1,
𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑜𝑢𝑛𝑡

10
) 

 

The output LocalTrustScore ranges between 0 and 1, 

reflecting the sender node’s trustworthiness from the 

receiver’s perspective. These scores are then used to 

evaluate the reliability of event-driven messages 

(WSMs) and are reported to RSUs in the WSM_report 

message for subsequent global trust assessment. 

 

𝐿𝑜𝑐𝑎𝑙𝑇𝑟𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = (𝐿𝑜𝑐𝑎𝑙𝑇𝑟𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒 ∗ 𝐷𝑎𝑡𝑎𝑊𝑒𝑖𝑔ℎ𝑡) +

(𝑇𝑟𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒0 ∗ (1 − 𝐷𝑎𝑡𝑎_𝑊𝑒𝑖𝑔ℎ𝑡)) 

 

4.2. Interaction Reporting to RSUs 

Given the rapidly changing characteristics of IoV, in 

which neighboring nodes frequently change, and the 

number of neighbors varies significantly [5], and 

considering the limited computational resources 

available in vehicles [4], trust assessment cannot be 

efficiently performed solely at the vehicle level. To 

address this, each receiving vehicle maintains 

interaction records with other nodes over a 30-second 

interval. After computing the local trust score for each 

sender node, the vehicle generates a WSM_Report 

message reporting interactions during the interval and 

sends it to the nearest RSU(s) within its 

communication range. 

Given the short-lived and highly dynamic 

interactions between sender and receiver nodes, 

vehicles discard these interaction records after 

reporting. This design reduces computational overhead 

on vehicles and focuses trust evaluation on short-term 

interactions. Consequently, a global trust assessment 

must be performed at the RSU level. 

The WSM_Report message sent from vehicles to 

RSUs every 30 seconds includes the following trust-

related parameters, which RSUs use to compute global 

trust scores: 

 

Message WSM_Report: Message Sent from 

Vehicles to RSUs every 30 seconds 

ReceiverPseudoId ← Pseudo-ID of BSM message 

receiver(Reprter to RSU) 

SenderPseudoId ← Pseudo-ID of BSM message 

sender 

ReceivedBSMCount ← Number of received BSMs 

AvgBsmScore ← Average(BSMScores) 

Familiarit ← InteractionHistory(Receiver, 

Sender) 

AvgPosSimilarity ← Average position 

similarity between (R,S) in BSMs 

AvgSpeedSimilarity  ← Average speed 

similarity between (R,S) in BSMs  

AvgHeadingSimilarity ← Average heading 

similarity between (R,S) in BSMs  

FirstInteractionTime ← Timestamp of first 

interaction 

LastInteractionTime ← Timestamp of last 

interaction 

Duration ← LastInteractionTime - 

FirstInteractionTime 

AvgRSSI   ← Average RSSI of received BSMs 

PDR ← PacketDeliveryRatio (communication 

quality) 

EventFactor   ← Event interaction score 

CalculatedTrustScore ← Local trust score 

(from LTrustAssess formula) 

ExitTime ← Report submission time (end of 30s 

window or node exit)   

 

4.3. Global Trust Assessment 

Global trust evaluation is performed by RSUs, 

which receive WSM_Report messages from multiple 

vehicles within their communication range at 30-

second intervals. These messages contain trust-related 

feedback from receiving vehicles regarding sender 

nodes, summarizing interactions during the reporting 

interval. RSUs aggregate these reports and, after a 

network-dependent interval (shorter for high-density 

networks and longer for low-density networks; 5000 s 

in our simulation), compute global trust scores for all 

vehicles that were active in their coverage area. To 

provide a comprehensive analysis, RSUs must account 

for temporal variation and repeated interactions when 

evaluating each node’s behavior. 
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To model these interactions, RSUs construct a 

feedback graph in which nodes represent vehicles and 

edges represent trust feedback between sender-receiver 

pairs [34]. In this graph, edges are directed from 

receivers to senders, and the value of each edge 

corresponds to the predicted trust score for that pair 

from the receiver's perspective. RSUs first predict trust 

scores for each sender-receiver pair over time based on 

historical interactions and behavioral changes to 

compute the edge score between each pair, and then 

aggregate the edge scores from multiple receivers to 

compute the overall global trust score for each sender 

node (graph vertex) [34][35][36][37][38]. The global 

trust score prediction will be done as follows. 

 

4.3.1. Predicting Global Trust Scores 

Aggregated global trust scores are predicted by RSUs 

using a pre-trained deep learning model trained on a 

simulation-generated dataset of vehicle interactions. 

To effectively model the network as a feedback graph, 

we employ Graph Attention Networks (GAT) [39] to 

capture the heterogeneous importance of trust 

feedback across vehicles. 

In this model, each vehicle is represented as a node 

and trust feedback between sender-receiver pairs as 

directed edges, with associated node and edge features. 

GAT learn node embeddings by aggregating behavioral 

patterns from neighboring nodes through a message-

passing process [35][37]. Also, by using attention 

mechanisms to assign different weights to neighbors, 

reflecting their relative importance. In the context of 

trust, these weights are learned based on trust-related 

parameters [39]. 

For this, RSUs first transform received interaction 

reports into sender-receiver pairs. The model then 

considers temporal sequences of interactions between 

each pair, incorporating all prior interactions at earlier 

time intervals from the perspective of different 

receivers, based on the history of the sender's 

interactions, to predict a pairwise trust score over time 

(edge trust). These predicted edge-level trust scores are 

aggregated across all receivers to compute the final 

global trust score for each sender node. To incorporate 

both temporal dynamics and network structure, we 

propose a TemporalGATWithLSTM model that 

combines graph attention with LSTM layers to capture 

spatial and temporal patterns in vehicle interactions. 

This approach enables RSUs to accurately predict 

dynamic trust levels for each vehicle, ensuring robust 

and scalable trust evaluation in highly dynamic 

vehicular networks. 

 

4.3.2. TemporalGATwith LSTM 

The proposed TemporalGATWithLSTM model is a 

hybrid deep learning architecture that integrates Graph 

Attention Networks (GAT) & Long Short-Term 

Memory (LSTM) networks to predict the aggregated 

global trust scores of vehicles in highly dynamic 

vehicular networks. This model can capture both 

graph-structured interactions among vehicles and the 

temporal evolution of interaction features. 

Model Architecture: The proposed model is a hybrid 

model as follows: 

LSTM layer: to model the temporal sequence of 

interactions between sender-receiver vehicle pairs. 

This layer processes the changes of input features such 

as AvgBSMScore, AvgSpeedSimilarity, 

AvgPosSimilarity, AvgHeadingSimilarity, Familiarity, 

Event Contribution, and PDR_RSSI_Combined over 

time, generating hidden states that capture historical 

interactions and contextual information for each pair. 

For each sender-receiver pair, multiple interactions 

may occur over time. The LSTM layer processes these 

temporal sequences and predicts the edge-level trust 

score for the latest interaction. Attention mechanisms 

ensure that interactions with more messages 

exchanged (high quality), longer durations, and more 

recent occurrences are weighted more heavily. 

ensuring that critical interactions have greater 

influence on edge-level trust scores. These edge-level 

trust scores are referred to as Receiver Feedback on the 

sender node's trust in this work. These values are then 

used in the GAT layer for node-level aggregation. 

 

Figure 3. LSTM Attention 

GAT layer: to represent the vehicle trust network as 

a graph of interactions between the sender and 

receiver vehicles, using the output of the LSTM and 

Attention Layer, where nodes are vehicles and 

incoming edges represent trust feedback from 

different receivers to senders. Since different 

feedback from different receivers doesn’t have the 

same weight for the sender, this layer also uses an 

attention mechanism to assign different weights to 

different edge trust scores according to the 

importance of each receiver node. Then, Aggregates 

weighted edge-level trust scores (feedbacks) from 

different receiver nodes to compute node-level 

(aggregated) trust scores that reflect a comprehensive, 
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network-wide perspective. Weights are assigned 

based on multiple factors, including: 

Source Node Trust: Trustworthiness of the receiver 

node providing feedback. 

Source Node Recency: Recency of the interactions 

of the node providing feedback. 

Source Node Degree: Degree of the receiver node 

(number of interactions in the network). 

Feedback freshness: Feedback freshness based on 

the time elapsed since the last interaction. 

Figure 4. Graph Attention 

Since edge weights depend on the trustworthiness of 

receiver nodes, which may themselves act as senders 

in other edges, an iterative procedure is needed for 

predicting the nodes' trust scores, which will be done 

as follows:  

• Initial trust scores for all receiver nodes are set to 

zero. 

• Node-level trust scores are computed based on 

Source Node Recency, Source Node Degree & 

Feedback freshness. 

• Updated node-level trust scores are used to 

recalculate attention weights and refine trust 

aggregation. 

• Iteration continues until convergence (typically 3–

5 iterations). 

Therefore, from the trust scores of different edges 

incoming to a node, we arrive at a node trust score. This 

trust score is referred to as RSU feedback on the sender 

node's trust. Figure 5 shows the structure of the 

proposed TemporalGATwithLSTM model.  

Figure 5. Structure of the proposed 

TemporalGATwithLSTM 

4.4. Decentralized Consensus 

To maintain decentralization, RSUs share their 

predicted aggregated trust scores with neighboring 

RSUs and use a consensus mechanism to determine the 

final global trust score for each vehicle, which is called 

the network feedback on the sender node trust. This 

approach ensures that predicted global trust is 

consistent and globally validated across the network, 

providing a robust, accurate, and decentralized view of 

trust. 

4.5. State Update and Malicious Node Detection 

Once the aggregated global trust score for each sender 

node is established after consensus, the network 

completes the current state (State N). To maintain 

temporal continuity in trust evaluation, the final global 

trust score of each node in the current state is calculated 

as the average of the newly computed global trust score 

and the final global trust score from the previous state: 

 

𝑓𝑇𝑁 =  
𝑐𝑇𝑁 +  𝑓𝑇𝑁−1

2
 

• 𝒇𝑻𝑵 = Final Global Trust at state N 

• 𝒄𝑻𝑵 = Calculated Global Trust at state N 

• 𝒇𝑻𝑵−𝟏 = Final Global Trust from previous state  

Note: Newly joined nodes start at State 0, with an initial 

global trust score of 0.7. At the end of each state, after RSU 

consensus, the global trust scores are updated across the 

network according to the above formula, ensuring that trust 

evaluation reflects both current behavior and historical 

performance. 

The proposed trust management model enables the 

detection of malicious nodes using aggregated global 

trust scores. After predicting trust values using 

TemporalGATWithLSTM, a threshold-based 

mechanism is applied. Various thresholds between 0.4 

and 0.7 (in increments of 0.05) were evaluated, and the 

optimal threshold was selected to maximize detection 

accuracy. A node is classified as malicious if its global 

trust score falls below the threshold; otherwise, it is 

classified as genuine. 

Malicious,  if  Trust(i) < threshold (0.65) 

Genuine,    if Trust(i) ≥ threshold (0.65) 

In this study, a threshold of 0.65 was determined to be 

optimal for distinguishing malicious nodes, enabling 

the network to punish or isolate such vehicles 

accordingly. 

 

5. Performance Evaluation 

To evaluate the performance of the proposed model, 

extensive simulations were conducted to assess the 

LTrustAssess algorithm and to generate the dataset 
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required for evaluating the TemporalGATwithLSTM 

model. So, the evaluation of the proposed model is 

organized into two main components: (i) vehicular 

network simulation for generating realistic interaction 

data and modeling malicious behavior for generating a 

dataset needed for further analysis, and (ii) 

implementation of the deep learning trust model for 

global trust prediction and malicious node detection. 

 

5.1. Vehicular Network Simulation 

Given the complexity and cost of deploying trust 

management models in vehicular networks, the 

proposed model is evaluated through simulation. 

Vehicular interactions are simulated to generate 

datasets for local trust computation, RSU-level trust 

reporting, and subsequent deep learning-based trust 

aggregation. 

The simulation is implemented using the open-source 

VEINS3  framework [40], which combines OMNeT++ 

(a discrete event network simulator) and SUMO4  

(microscopic traffic simulator). VEINS supports 

realistic V2X scenarios by integrating road traffic 

patterns from SUMO with wireless communication 

components, including an IEEE 802.11p MAC/PHY 

model in OMNeT++. The simulator therefore extracts 

and maintains the following per-message items during 

each 30-second local window from vehicle-to-vehicle 

interaction logs: BSMScore (per-message 

plausibility/consistency score), Familiarity, 

Position/Speed/Heading Similarities, AvgRSSI, Packet 

Delivery Ratio (PDR), event-related metrics (e.g., 

EventContribution, NotFakeEventRatio), and other 

intermediate values required by the LTrustAssess 

pseudocode described earlier to compute the local trust 

scores of each vehicle.  

For V2I WSM_Report messages, four RSUs are 

deployed along roads in the simulation map. Their 

coordinates are chosen to ensure uniform coverage, 

such that the entire simulation area is within RSU 

coverage. Each RSU receives 30-second trust reports 

from vehicles currently inside its communication range 

and uses them for the RSU-level aggregation/learning 

components. 

To incorporate malicious behaviors, the simulation is 

extended using the F2MD5  framework [8], an open-

source extension of VEINS designed for modeling 

attacks and misbehavior in vehicular networks. F2MD 

enables the injection of various malicious data-level 

actions, particularly at the BSM level, such as false 

message injection, data manipulation, and intentional 

 
3 VEhicles In Network Simulation 

4 Simulator of Urban MObility 

delays [40][41]. The implemented data-level attacks 

are as follows: 

ConstPos — broadcasts the same (constant) position 

in every BSM. 

RandomPos — broadcasts a random position 

sampled from the simulation area. 

Const PosOffset  — broadcasts the same (constant) 

position plus a bounded random offset.  

RandomPosOffset — broadcasts the real position 

plus a bounded random offset. 

ConstSpeed — broadcasts a constant speed in all 

BSMs. 

ConstSpeedOffset  — broadcasts the same (constant) 

speed plus a bounded random offset.  

RandomSpeed — broadcasts a random speed with a 

specified upper bound. 

RandomSpeedOffset — broadcasts the real speed 

plus a bounded random offset. 

StaleMessages — transmits authentic-looking but 

delayed (stale) BSMs (fixed delay before broadcast). 

DoS, DoS_Random, DoS_Disruptive — increases 

BSM transmission frequency to flood the wireless 

channel (can be targeted or random) to disrupt 

communication availability. 

Disruptive — repeatedly retransmits an older BSM 

from its history to confuse neighbors (replay of 

previously valid messages). 

EventualStop  — broadcast the speed = 0 in order to 

inject eventualStop. 

DataReplay — selects a target and replays that 

target’s past messages with a delay, creating an 

apparent tailing behavior (two vehicles appearing to 

travel closely). 

Plus, these data-related attacks, some additional trust-

feedback related attacks were developed and integrated 

into the F2MD framework for implementing trust-

related attacks. The implemented attacks are: 

Bad-Mouthing (False Negative feedback) — the 

malicious reporter lowers the reported local trust for 

honest nodes. Specifically, the malicious reporter 

probabilistically reduces the computed sender-node 

trust score within a bounded range before sending it to 

the RSU. The goal is to cause false accusations and 

isolate honest nodes. 

Good-Mouthing (Collusion / False Positive 

feedback) — the malicious reporter increases reported 

trust within a bounded range for colluding malicious 

5 Framework for Misbehavior Detection 
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peers to protect malicious nodes and bias the global 

aggregation. 

Selective Misbehavior Attack — Malicious node 

attacks only some honest nodes and displays 

completely honest behavior towards some other nodes. 

These attacks are pairwise oriented and are defined as 

related to the edges in the graph. 

For implementing these attacks as realistically as 

possible, the ZigZag (On/Off) attack is included for 

both data-layer and feedback attacks. In this situation, 

a malicious node initially behaves honestly for some 

time but subsequently injects dishonest behavior in 

certain interactions.  

In our experiments, the Ulm traffic scenario is 

employed, which is a realistic vehicular traffic scenario 

for IoV networks. The mobility traces of this scenario 

are generated using SUMO, while integration with 

OMNeT++ is performed through the VEINS 

framework. The corresponding map of Ulm is 

extracted from OpenStreetMap and depicts an urban 

environment with high vehicular mobility. In this real-

world scenario, vehicle interactions are logged 

continuously over a 24-hour period and made available 

within the F2MD framework [8].  

Then, 30% of vehicles are randomly selected as 

attackers; in 70% of cases, they inject data-level 

attacks, and in the remaining cases, they cause 

feedback corruption. The simulation of the Ulm 

scenario runs for 5000 seconds, where more than 550 

vehicles interact with each other. The interaction logs 

are stored and subsequently used to generate the 

dataset. Figure 6 illustrates the simulation 

environment, and Table 2 shows the simulation details.  

During simulation runs, WSM_Report messages and 

ground-truth attacker labels are logged per interval to 

generate the IOV_DS dataset. The generated dataset is 

then used to train and test the proposed RSU-level deep 

learning TemporalGATWithLSTM model for global 

trust prediction and malicious node detection. Figure 7 

shows the sample rows of the IOV_DS dataset 

generated from the simulation, where Table 3 shows 

the parameters used in this dataset. 

Table 2. Simulation Details 

 

 

 

 

 

 

Figure 6. Simulation of the proposed model 

Value Parameter 

OMNeT++ 5.0 Network simulator 

SUMO 0.25.0 V2X Traffic Simulator 

VEINS 4.4 Framework 

F2MD Malicious Nodes Framework 

6899 M * 5889 M Simulation arena (urban) 

5000 Seconds Simulation Time 

75 Seconds Event start time 

+550 Number of Vehicles 

30 % Percentage of Malicious Nodes 

IEEE 802.11p MAC Protocol 

Simple Path Loss Radio Propagation Model 

1024 bit Data length 

256 bit Header Length 

0.7 Initial Trust Score 

11p Specific Parameters (NIC-Settings) 

20 mW Tx Power 

6 Mbps Bit Rate 

-89 dbm MinPowerLevel 

-98 dbm Noise Floor 

0 Meter Antenna Offset Y 

80 bit App Layer Header Length 

1 seconds Beacon Interval 

5.9 GHz Frequency Band 

1000 Meters Max Interference Distance 

Figure 7. sample rows of the IOV_DS generated dataset 
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5.2. Implementing Proposed 

TemporalGATwithLSTM deep learning model 

In this section, we describe the implementation of the 

proposed deep learning–based trust management 

model, TemporalGATwithLSTM, and its training on 

the IoVDS dataset generated from the realistic Ulm 

simulation. The implementation is carried out in 

PyTorch. The implementation pipeline consists of five 

main stages: (i) feature definition, (ii) data 

preprocessing, (iii) sequence preparation, (iv) model 

design and training, and (v) model evaluation. 

Feature definition: The proposed model uses a set of 

trust-related features, including AvgBSMScore, 

Familiarity, AvgPosSimilarity, AvgSpeedSimilarity, 

AvgHeadingSimilarity, AvgRSSI, PDR, and 

EventFactor, as input features. Additional features 

(e.g., SenderPseudoId, ReceiverPseudoId, 

ReceivedBSMCount, Duration, ExitTime) are also 

employed for node pairing and temporal modelling... 

interaction structuring. Labels include fTrust and 

senderMbType and are used for supervised training 

and evaluation. 

Data Preprocessing: The dataset undergoes several 

preprocessing steps: 

• Cleaning: Removing missing values in critical 

fields (ExitTime, fTrust, AvgRSSI) and replacing 

invalid numeric values (e.g., negative 

ReceivedBSMCount) with zero. 

• Feature Engineering: A combined feature, 

PDR_RSSI_Combined, is created to represent link 

quality more comprehensively. 

• Standardization: Features are standardized using 

zero mean and unit variance for faster convergence. 

• Class Weighting: Since trust values are unevenly 

distributed, target values are divided into ten bins, 

and inverse-frequency weights are computed. 

Lower trust bins are further emphasized to improve 

the detection of malicious nodes. 

Sequence Preparation: Since trust changes 

temporally, the dataset is grouped by sender–receiver  

 

 

 

 

 

 

 

 

 

 

pairs and sorted into sequences. Variable-length 

sequences are padded to a fixed max sequence length, 

enabling batch processing with the LSTM component. 

Models’ definition and training:  

TemporalGATwithLSTM: The main model 

integrates temporal learning and graph attention 

mechanisms. By integrating these mechanisms, the 

model captures both the temporal dynamics and the 

structural dependencies of trust in IoV networks. 

Architecture: This model consists of 2 main 

components. 

RNN Component (Temporal Module): A 

bidirectional LSTM processes sequences of 

interactions, with attention mechanisms emphasizing 

more recent interactions, longer ones, and those with 

higher BSM counts within a sequence (LSTM 

Attention). 

Graph Component (Spatial Module): Vehicle 

interactions are represented as a directed graph, with 

nodes denoting vehicles and edges denoting trust 

feedback. Node features include degree and average 

recency. Two GAT layers with multi-head attention (8 

heads) learn structural dependencies, prioritizing 

feedback (edges) from neighbors with stronger 

influence, based on recency, degree, and sender 

trustworthiness. Ensuring that the final node trust score 

is computed as a weighted aggregation of multiple trust 

feedbacks (Graph Attention). After each GAT layer, 

there is a LayerNormalization, ReLU Activation & 

dropout set to 0.2. The outputs of the Dropout layers 

preceding each GAT layer are combined using the 

Residual_weight. Finally, using an iterative method, 

the trust scores of the sender nodes are predicted using 

the GraphAttention mechanism. 

Training: To train the proposed model, the dataset is 

split into training and validation sets at an 80-20 node-

pair ratio. Then, the model is trained using the class 

weights computed during preprocessing and a 

combined weighted loss function comprising Weighted 

MSELoss (with a hinge term to penalize high trust 

scores for malicious nodes) for the regression 

component and BinaryCrossEntropyLoss for the 

Columns 

Receiver PseudoId Sender PseudoId Sender MbType 

(Ground Truth) 

Receiver MbType  

(Ground Truth) 

Received BsmCount Avg BsmScore Familiarity AvgRSSI 

AvgPosSimilarity AvgSpeedSimilarity AvgHeadingSimilarity AvgTotalSimilarity 

First Interaction Time Last Interaction Time Duration  PDR  

fTrust  

(Ground Truth) 

Calculated TrustScore 

(Feedback Trust)   

EventFactor  ExitTime  

Table 3. Columns used in Dataset 
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classification component. These loss functions are 

balanced with coefficients α = 0.3 and β = 0.7 to 

prioritize classification over regression. To train the 

model, the AdamW optimizer with an initial learning 

rate of 0.0025 is used, and weight_decay=0.0001 is 

also applied to reduce the risk of overfitting. 

Additionally, a learning rate planner dynamically 

adjusts the optimizer's learning rate by a factor of 0.5 

based on model performance to improve convergence. 

An Early Stopping mechanism with patience 20 is also 

defined, indicating the number of epochs the planner 

waits for the validation loss to recover. The model is 

trained for a maximum of 300 Epochs, and in each 

epoch it produces edge- and node-level trust-score 

predictions and classification probabilities. This 

process is repeated, updating the output until stable 

changes in trust values are achieved. The model with 

the best checkpoint (i.e., the lowest validation loss) is 

saved. The model is trained to predict TemporalTrust 

as a proxy label, defined as the exponentially weighted 

average of historical trust scores (fTrust) across 

interactions of a pair. The pseudocode for calculating 

TemporalTrust is shown below. 

 

Algorithm 2: ComputeTemporalTrustScore 

Pseudocode for Computing TemporalTrustScore 

as ProxyLabel 

Input: InteractionLevelTrustScores 

Output: TemporalTrustScore 

 Initialize 
Decay_rate = 0.3 

finalTrustScore = Interaction Level TrustScore 

ExponentialDecayWeights = exp(-decay_rate * 
(NumberOfInteractions - 1)) 

 MessageQualityWeights = Log(BSMCount where 
Capped to max 30) / Log(30) 

DurationWeights = Log(duration) / 
Log(max(duration)) 

OverallWeights = ExponentialDecayWeight * 
MessageQualityWeights * durationWeights 

OverallWeigths = OverallWeights / 
SUM(OverallWeights) 

TemporalTrust = (fTrust * OverallWeights) – for 
each Interaction in senderReceiverPairSequence 

END 

 

5.3. Results and Discussion 

In this study, to evaluate the performance of the 

proposed model to assign trust scores and detect 

malicious nodes, the criteria defined in the confusion 

matrix have been used to calculate the True Positive 

(TP), True Negative (TN), False Positive (FP), and 

False Negative (FN) parameters. Then, based on these 

values, the following key evaluation criteria, including 

Precision, recall, accuracy, F1-score, true positive rate, 

and true negative rate, have been calculated, which are 

mainly used to examine the feasibility of the proposed 

trust model [42]. This section analyzes the 

performance of the proposed trust management 

framework through two evaluation levels: (i) vehicle-

level (local trust computation) and (ii) RSU-level 

(global trust aggregation using deep learning). The 

evaluation focuses on two key aspects of trust 

management models: detection capability (the ability 

to distinguish between genuine and malicious nodes) 

and resilience against trust-related attacks. 

5.3.1. Vehicle level evaluation 

At the vehicle level, the LTrustAssess algorithm 

computes local trust scores in real time, based on 

plausibility & consistency checks over BSM data. A 

node is classified as malicious if its trust score falls 

below a predefined threshold. To select an optimal 

threshold, multiple candidates between 0.50 and 0.70 

(step size 0.05) were evaluated, and the classification 

performance was assessed using a confusion matrix. 

For this purpose, the algorithm’s performance is 

examined in two different situations: (i) without trust 

feedback related attacks, such as goodMouthing, 

BadMouthing. (ii): with 20% malicious trust feedback 

in the whole network. The results are shown in the 

following: 

     Table 4. LTrustAssess without Trust feedback attacks 

  

    Table 5. LTrustAssess with 30% Trust feedback 

attacks 

 

The results show that the local trust assessment 

method achieves high accuracy in detecting data-level 

attacks such as DoS, message modification, and data 

replay, due to effective plausibility and consistency 

checks . However, since LTrustAssess operates 

instantaneously without considering temporal history 

and changes in node behavior over time,  it is less 

effective against time-varying and trust-related attacks 

such as ZigZag (On/Off) and good-mouthing and bad-

mouthing attacks, where malicious nodes alternate 

between honest and dishonest behaviors. Therefore, 

this detection needs to be performed at the RSU level 

and globally. 

F1-Score Recall Precision Accuracy Threshold Algorithm 

0.9679 0.9811 0.9552 0.9515 0.65 LTrustAssess 

InteractionLevel 

0.9859 0.9952 0.9767 0.9786 0.65 LTrustAssess 

NodeLevel 

F1-Score Recall Precision Accuracy Threshold Algorithm 

0.8564 0.8180 0.8984 0.7952 0.65 LTrustAssess 

InteractionLevel 

0.8992 0.9216 0.8778 0.8446 0.65 LTrustAssess 

NodeLevel 
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5.3.2. RSU level evaluation 

 At the RSU level, the proposed 

TemporalGATwithLSTM model aggregates trust over 

time and across multiple receivers. The model is 

trained on the IoVDS dataset and evaluated on the test 

set after applying the same preprocessing steps as in 

the training phase. In examining global trust scores, we 

will analyze both the trust scores between pairs (edge 

trust scores) and the trust scores of each sending entity 

(node trust scores). Edge trust scores are used to assess 

the model's ability to detect Selective Misbehavior 

Attacks, in which malicious nodes send only fake 

messages to some nodes while behaving normally 

toward others. Therefore, both the predicted edge trust 

score and the predicted node trust score are examined 

in the performance evaluation. The model-predicted 

trust scores are then used to classify nodes as genuine 

or malicious, with thresholds between 0.50 and 0.70. 

As in the local evaluation, a threshold of 0.65 yielded 

the best results. For this purpose, the model’s 

performance is examined in two different situations: (i) 

without trust feedback related attacks, such as 

goodMouthing, BadMouthing. (ii): with 30% 

malicious trust feedback in the whole network. The 

results are shown in the following tables.  

     Table 6. DL Model without Trust feedback attacks 

 

Table 7. DL Model with 30% Trust feedback attacks 

 

     These results shows that the deep learning model in 

an effective manner detects malicious nodes at the end 

of each state by leveraging both temporal trust 

dynamics and graph-based structural dependencies. 

The attention mechanism further enhances resilience 

against ballot-stuffing (good-mouthing) and bad-

mouthing attacks, as RSUs assign higher weights to 

consistent feedback from trusted nodes and down-

weight anomalous feedback. Furthermore, the model 

shows strong resistance to ZigZag attacks: even when 

malicious nodes intermittently behave honestly, their 

cumulative trust score gradually decreases due to 

temporal aggregation, enabling detection over time. In 

addition, the calculated edge trust score between each 

pair allows the impact of the Selective Misbehavior 

Attack to be minimized. The trust score between each 

pair indicates the feedback from each node to other 

nodes and enables the detection of whether a malicious 

node has targeted only some nodes in the network. 

5.4. Comparison 

In this section, the proposed trust management 

model is compared with existing approaches from two 

different perspectives, aligned with the contributions 

of this research. The first comparison focuses on 

dataset generation, while the second addresses the 

performance of malicious node detection models. 

▪ Comparison of the IoVDS-generated dataset 

with existing datasets, 

▪  Comparison of the proposed detection model 

with baseline methods. 

 

5.4.1. Comparison of the IoVDS Dataset 

One of the contributions of this study is the 

development of IoVDS, a dataset specifically designed 

for trust management in Internet of Vehicles. To the 

best of our knowledge, the closest effort toward 

creating a trust-related dataset for vehicular networks 

is the work of Wang et al. [16], who introduced the 

TM-IoV dataset. In their work, the authors emphasized 

that no public dataset for trust management in IoV was 

available, and thus their dataset represented an initial 

contribution to this area. However, their dataset suffers 

from several limitations that IoVDS addresses: 

    Temporal dimension: TM-IoV is a static dataset in 

which trust parameters are only computed once at the 

end of the simulation, making it unsuitable for 

analyzing the temporal evolution of trust. In contrast, 

IoVDS captures trust-related parameters at multiple 

time intervals, enabling time-series analysis of trust 

dynamics. 

    Scope of features: TM-IoV is node-centric, 

considering only entity-related parameters and 

ignoring data-level trust factors. IoVDS is hybrid, 

incorporating both entity-level features (e.g., 

familiarity, PDR, Similarity) and data-centric features 

(e.g., avgBSMScore, RSSI). 

    Feature richness: IoVDS includes additional 

contextual parameters such as number of exchanged 

messages, duration of interactions, RSSI values, and 

event-related factors, which enrich the dataset and 

allow extraction of more meaningful dependencies. 

    Attack coverage: TM-IoV only considers the 

ZigZag (On–Off) attack. IoVDS includes a wider 

variety of trust-related attacks such as ZigZag, Bad-

Mouthing, and Good-Mouthing, which enhances the 

dataset’s realism and robustness. 

F1-Score Recall Precision Accuracy Threshold Algorithm 

0.9786 0.9919 0.9658 0.9683 0.65 Deep 

Learning 

Edge Level 

0.9906 1.0000 0.9814 0.9857 0.65 Deep 

Learning 

Node Level 

F1-Score Recall Precision Accuracy Threshold Algorithm 

0.9453 0.9600 0.9311 0.9187 0.65 Deep 

Learning 

Edge Level 

0.9823 0.9905 0.9743 0.9732 0.65 Deep 

Learning 

Node Level 
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Table 8. comparison of the proposed dataset with TM-IoV dataset 

Category Proposed Dataset (IoVDS) Dataset [16] TM-IoV 

Dataset Size Interaction logs between 582 vehicles (over ~17,000 

interactions) 

Interaction logs between 79 vehicles 

(~9,700 interactions) 

Temporal 

Dimension 

Dynamic (trust-related parameter values for each trustor–

trustee pair at different time intervals during simulation) 

(sequence of interactions) 

Static (trust-related parameter values for 

each trustor–trustee pair at the end of the 

simulation) 

Approach Hybrid (entity- and data-focused) Entity-focused 

Dataset 

Structure 

Pair-based Pair-based 

 

Parameters 

BSMScores, SpeedSimilarity, HeadingSimilarity, 

PositionSimilarity, Familiarity, ReceivedBSMCount, 

Duration, PDR, EventFactor, RSSI, ReportTime, 

SenderMbType, fTrust, CalculatedTrustScore 

PDR, Similarity, Familiarity, Context, 

Reward/Punishment 

Simulator Veins framework in OMNeT++ and Ulm Scenario (a real-

world scenario, highly relevant to vehicular networks) 

Java-based IoV simulator (no further 

details provided) 

Implemented 

trust Attacks 

ZigZag attack / Badmouthing attack / Ballot-stuffing attack 

+ some data level attacks and misbehaviors  

ZigZag attack 

Applied 

Model 

TemporalGAT with LSTM, trained on the generated 

dataset 

No learning model introduced 

Availability Public Not Public 

 

 

5.4.2. Comparison of Proposed DL Model 

    It is important to note that a direct one-to-one 

comparison of trust management models is often not 

feasible due to differences in trust metrics, simulation 

environments, and datasets [26]. Nevertheless, to 

evaluate the effectiveness of the proposed model, it 

was compared with existing methods by implementing 

prominent approaches from similar studies on the 

generated dataset, using the trust parameters defined in 

this research. In this process, common evaluation 

metrics, including True Negative Rate, Accuracy, 

Recall (True Positive Rate), Precision, and F1-Score, 

have been utilized to evaluate the detection rate of 

malicious nodes, enabling a comparative analysis and 

clarifying the relative standing of the proposed model 

compared to other methods. The following table 

compares the proposed deep neural network-based 

method with similar works by evaluating several 

common performance metrics defined in those studies. 

To this end, comparisons have been made with baseline 

methods, such as Weighted Voting and the Random 

Forest-based approach presented in [28]. 

 

Table 9. comparison of approaches without malicious 

attacks 

 

Table 10. Comparison of approaches with 30% 

malicious attacks 

Approach  scope Accuracy Precision Recall F1-

Score 

 

Baseline Weighted voting 

Edge 84.95 90.33 88.97 89.65 

Node 91.61 91.93 97.39 94.58 

 

Random Forest 

Edge 90.88 98.67 88.74 93.44 

Node 96.96 99.27 96.67 97.95 

 

KNN Regressor 

Edge 95.13 98.06 95.24 96.63 

Node 97.5 99.04 97.62 98.33 

Proposed Model 

TemporalGATwithLSTM 

Edge 97.65 97.55 99.29 98.41 

Node 98.57 98.36 99.76 99.06 

Approach  scope Accuracy Precision Recall F1-

Score 

 

Baseline Weighted voting 

Edge 78.34 87.26 82.48 84.80 

Node 89.46 90.22 96.44 93.23 

 

Random Forest 

Edge 82.50 95.38 79.98 87.01 

Node 92.86 98.97 91.45 95.06 

 

KNN Regressor 

Edge 84.57 93.83 84.49 88.92 

Node 93.21 97.99 92.87 95.37 

Proposed Model 

TemporalGATwithLSTM 

Edge 91.87 93.11 96 94.53 

Node 97.32 97.43 99.05 98.23 
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Figure 8. Comparison of Edge Trust in different 

approaches without and with 30 % malicious trust 

attacks 

 

Figure 9. Comparison of Node Trust in different 

approaches without and with 30 % malicious trust 

attacks 

As shown by the results, when the rate of good- and 

bad-mouthing attacks in the network is low, the 

proposed method remains superior to the compared 

methods; however, the other methods also identify 

malicious nodes with a high percentage. However, with 

the increase in the rate of good-mouthing and bad-

mouthing attacks in the feedback of malicious nodes 

regarding the trust score of other entities in the 

network, our model remains capable of malicious node 

detection with a high percentage, which indicates the 

appropriate efficiency of the proposed model in 

identifying malicious nodes in a high percentage of 

trust-related attacks compared to other basic and 

machine learning-based methods. 

The primary advantage of the proposed approach 

over the evaluated methods lies in its use of deep neural 

networks to compute trust scores and its consideration 

of dynamic behavioral and temporal patterns. By 

analyzing the historical performance of nodes over 

time and accounting for their interactions across the 

entire network based on a graph-based representation, 

this model enables a more comprehensive trust 

evaluation for each node. This feature has led the 

proposed model to achieve, according to comparative 

results, a higher detection  

rate and better performance compared to the evaluated 

models on the dataset generated from the simulation of 

a real-world ULM scenario using the Veins framework 

and the defined trust parameters. Consequently, it 

emerges as an efficient approach for trust management 

and the identification of malicious nodes in vehicular 

networks. 

5.5. Complexity Analysis and Execution Time of 

the Proposed Method 

When analyzing the computational complexity and 

execution time of the proposed method, the following 

points are noteworthy: 

     Global Trust Score Computation Window: In the 

current model simulation, a 5000-second time window 

is used to compute the global trust score. Given that the 

simulation scenario is an Urban Local Mobility (ULM) 

scenario, this duration is appropriate because, in less 

than two hours of urban mobility, vehicles do not travel 

far enough to pass through the communication range of 

many RSUs. Consequently, even in the most extreme 

case, the number of RSUs that must participate in 

consensus over the trust score remains limited. This 

allows the adoption of a lightweight, location-aware 

consensus protocol for trust aggregation among RSUs. 

Depending on the network type and density, this 

duration may be adjusted (increased or decreased). 

 

     On-Vehicle Computation: Vehicle-to-vehicle 

communication is performed using Basic Safety 

Messages (BSMs), whose format is standardized and 

readily processable at the vehicle level. Each vehicle 

performs a simple trust computation every 30 seconds 

to derive its local trust score. Since this calculation is 

based on a weighted sum, the computational 

complexity remains O(1). This indicates that the model 

is well-suited to optimizing energy consumption in 

vehicles within IoV environments [43][44]. 

     Deep Learning Component at the RSU Layer: 

The deep learning component for RSUs was 

implemented and evaluated in Google Colab. The 

following execution times were obtained:  

Model training: Training the deep learning 

model for 300 epochs took approximately 16 minutes. 

Since the model is pre-trained and only needs to be 

loaded during evaluation, training time does not pose 

any operational concerns. 

     Model evaluation: The end-to-end 

evaluation pipeline—transforming the raw simulation 

data into final trust outputs—took 45 seconds for data 

corresponding to a 5000-second simulation interval. 

This duration includes interaction pairing, sequence 

construction, trust prediction using an LSTM layer, 

graph-based representation of interactions, and 
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computation of link- and node-level trust scores over a 

5000-second history. After incorporating the time 

required for RSU consensus via a lightweight 

consensus protocol, the global trust score for all nodes 

can be computed in under 2 minutes. Compared to the 

5000-second interval between defined simulation 

states, these results demonstrate that execution time is 

well within acceptable limits. 

     Suitability for RSU Deployment: RSUs typically 

have fixed locations, larger communication ranges, and 

higher computational capacity than vehicles. Given the 

small size and low computational overhead of the 

proposed deep learning model, it can be easily 

deployed at the RSU level without operational 

constraints. 

 

6. Discussion and Conclusion  

In this research, we introduced a trust management 

model for detecting malicious nodes in the Internet of 

Vehicles. The proposed model adopts a two-layer 

architecture operating at both the vehicle and RSU 

levels and combines data-centric and node-centric 

approaches to detect malicious behaviors at both the 

data and node levels. This design enables a 

decentralized and efficient trust management 

mechanism for vehicular networks. 

The proposed model was implemented through 

simulation and evaluated using standard performance 

metrics. The evaluation results, along with 

comparisons with baseline methods, demonstrate that 

the proposed approach effectively manages trust by 

assigning dynamic trust scores to vehicles. Moreover, 

it achieves higher detection rates for malicious nodes 

and demonstrates greater resilience to trust-related 

attacks than baseline models. The advantages of this 

work can be summarized as follows: 

• To address the lack of publicly available trust 

datasets, we generated a dataset (IoVDS) through 

the simulation of a real-world urban scenario, 

which can serve as a foundation for future studies. 

• By leveraging graph-based feedback aggregation 

and an attention mechanism, the model enables 

dynamic weighting of feedback from neighboring 

nodes, overcoming limitations in traditional trust 

aggregation schemes. 

• The integration of LSTM enables the model to 

incorporate temporal dynamics, aligning with the 

principle that trust is developed over time. 

• To tackle the scalability challenge, the model relies 

on a decentralized consensus mechanism among 

RSUs, ensuring distributed trust management 

across the network. 

These characteristics position the proposed framework 

as a promising candidate for deployment in ITS, 

enhancing both the security and performance of 

vehicular networks. 

6.1. Open Research Directions 

While the proposed model shows strong 

performance, several open research directions remain 

for future investigation: 

     Weighted RSU feedback – The current model 

weights node feedback dynamically; it could be 

extended to weight RSU contributions based on their 

historical reliability during the consensus process. 

     Consensus mechanism optimization: Future work 

should investigate lightweight, scalable consensus 

mechanisms for RSUs, potentially employing 

localized or cluster-based consensus to reduce latency 

and better adapt to vehicle mobility. 

    Blockchain integration – The final trust scores, 

once agreed upon by RSUs, could be stored on a 

blockchain, ensuring immutability, transparency, and 

availability of trust information across all RSUs. 

     Data retention policies: Currently, only the most 

recent global trust scores are retained for each state, 

whereas previous interaction data is discarded. 

Optimizing data storage and retention strategies could 

improve long-term trust assessment. 

     Privacy Consideration – Real-world vehicle 

networks use different pseudo-IDs to maintain privacy 

in various interactions, and their real ID is only 

registered in the network. In the current study, vehicles 

also use pseudo-IDs to exchange information among 

themselves; however, these pseudo-IDs are defined as 

fixed and immutable. Future research in this area can 

address the modification of pseudo-IDs across 

vehicles' interactions with other nodes to maintain 

privacy. 

    Event Confidence evaluation – A promising 

research direction is the application of calculated trust 

scores to event message validation. When a vehicle 

broadcasts an event (e.g., an accident or hazard 

warning), the trust scores of both the sender and relay 

nodes could be incorporated, along with factors such 

as hop count and message redundancy, to assess event 

credibility. 

By addressing these challenges, future research can 

further strengthen the robustness, scalability, and 

applicability of trust management systems in IoV, 

ultimately contributing to the development of secure, 

reliable, and intelligent transportation networks. 
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