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Abstract:

With the rapid expansion of the Internet of Vehicles, ensuring security and trust among nodes has
emerged as a fundamental challenge in this domain. The open, dynamic, and distributed nature
of these networks creates an environment conducive to malicious nodes that can compromise
communication integrity and overall system security by disseminating false or misleading
information. This research presents a hybrid, decentralized trust management model that, through
a multilayer approach, can effectively detect and analyze malicious nodes in connected vehicular
networks. The proposed framework adopts a two-layer structure: in the first layer, vehicles
compute short-term local trust scores of their peers based on interaction data using the proposed
LTrustAssess algorithm; while in the second layer, roadside units model the network as a graph
and employ the proposed deep learning model, Temporal GATwithLSTM, to predict and update
the global and long-term trust scores of nodes over time. Experimental evaluation on a dataset
generated from simulated vehicular interaction logs demonstrates that the proposed model
achieves higher accuracy and efficiency in the distribution of trust scores and in detecting
malicious nodes than existing baseline approaches. Overall, by providing a scalable and adaptive
mechanism, the proposed model enhances the security, trust, and efficiency of vehicular networks
and represents a significant step toward realizing future intelligent and safe transportation
systems.
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Infrastructure (V2I), and broader Vehicle-to-Everything

1. Introduction I » .
(V2X) communications, loV facilitates safer driving,

The rapid advancement of communication technologies
has positioned Intelligent Transportation Systems as a key
application domain of the Internet of Things and wireless
networks. These systems significantly contribute to
improving road safety, reducing traffic congestion, and
enhancing the quality of life [1][2]. Vehicular Ad Hoc
Networks (VANETSs) were initially introduced to support
such applications, enabling vehicles to exchange real-time
information with one another and with roadside
infrastructure [3]. However, due to their highly dynamic
topologies, limited coverage, and heterogeneous wireless
communication environments, VANETs face numerous
challenges [3]. To overcome these limitations, the concept
of the Internet of Vehicles (IoV) has emerged as an
evolution of VANETS,

integrating loT technologies to enable vehicles to operate as
intelligent, connected nodes capable of sensing, processing,
and sharing critical traffic and environmental data [3].

efficient traffic management, and more reliable route
planning [2][3][4][5]. Despite these advantages, IoV
environments remain highly vulnerable to security and trust
issues due to their open, large-scale, highly dynamic and
distributed nature [5][6][7]. Malicious nodes can
disseminate misinformation, disrupt communication, and
jeopardize road safety, potentially leading to severe
consequences, including traffic manipulation, chain
collisions, and large-scale urban crises [7]. Such
characteristics make IoV prone to both external attacks and
insider threats, where authenticated nodes may inject
falsified messages [8].

Therefore, one of the fundamental challenges in IoV is
ensuring reliable communication between vehicles and
infrastructure components such as Roadside Units (RSUs)
[21[3][5]- The presence of malicious nodes exacerbates this
challenge, as they may inject falsified data or deliberately
trigger accidents, undermining the safety and stability of the

Through Vehicle-to-Vehicle (V2V), Vehicle-to- entire transportation system [2][3][4][5]. The highly
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dynamic topology of vehicular networks, the massive scale
of data exchange, and the short-lived interactions between
nodes further increase the system’s susceptibility to internal
threats [8]. Figure 1 shows different types of
communications in the Internet of Vehicles.
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Figure 1. Types of IoV Communications

Traditional security mechanisms, such as encryption and
authentication, are effective against external threats but
insufficient for addressing internal attacks launched by
compromised yet authenticated nodes. This highlights the
need for trust management frameworks that can
continuously evaluate the reliability of participating entities
and detect malicious behaviors [2][3][4][5].

Trust management has emerged as an effective approach to
address these issues by continuously evaluating node
behavior, assigning trust scores, and isolating malicious
participants from the network [2][3][4]. Unlike
Misbehavior detection methods that identify misbehavior
only at the data level, trust management provides a more
comprehensive framework by considering long-term
behavioral patterns and collective feedback from multiple
entities [8]. However, designing robust and efficient trust
management systems for IoV remains a significant open
research direction, as existing solutions often lack
comprehensive trust attributes, are limited in their
adaptability to dynamic environments, or are vulnerable to
trust-related attacks.

In response, this research proposes a decentralized, Al-
enabled trust management framework that leverages deep
neural networks for dynamic trust evaluation. By
integrating both data-centric and node-centric perspectives,
the proposed model aims to optimize trust score
computation, enhance detection of malicious nodes, and
strengthen the resilience of IoV communications.

The primary objective of this study is to design and
implement a trust management model that enhances the
security and reliability of oV communications. By enabling
accurate and timely identification of malicious entities, this
model ensures trustworthy data exchange among vehicles,
thereby improving network robustness and safety [2][3][4].

The specific contributions of this research are as follows:

e A two-layer trust management model (local and global)
is proposed, combining data-centric and node-centric
trust evaluation, and relying on consensus among RSUs
to support decentralized decision-making.

o A local trust evaluation algorithm (LTrustAssess) is
introduced for computing trust scores of vehicles during
simulation, enabling local detection of misbehavior &
fake relayed events.

e A domain-specific IoV trust dataset is generated by
extracting  trust-related features from vehicle
interactions in a realistic simulation scenario, providing
a valuable resource for future research.

o A deep neural network model
(Temporal GATwithLSTM) is developed to predict
vehicles’ global trust scores over time. By leveraging
temporal patterns and graph-based feedback, the model
improves the accuracy of malicious node detection and
strengthens overall network resilience.

By combining distributed trust evaluation with deep
learning, this research advances state-of-the-art [oV security
solutions, offering a scalable, adaptive, and intelligent
framework that addresses both short-term misbehavior
detection and long-term trust assessment.

The remainder of this paper is organized as follows:
Section 2 introduces the background and fundamental
concepts of the Internet of Vehicles (IoV) and trust
management in the oV context. Section 3 provides an
overview of related works and existing trust management
approaches in vehicular networks. Section 4 presents the
proposed decentralized Al-enabled trust management
framework, including the local trust evaluation algorithm
and the global trust prediction model. Section 5 discusses
the experimental setup, dataset generation, and evaluation
metrics, followed by the analysis of results & comparison
with other works. Finally, Section 6 concludes the paper and
outlines potential directions for future research.

2. Background
2.1. Internet of Vehicles

The Internet of Vehicles, as a key component of intelligent
transportation  systems and autonomous  vehicle
technologies, enables real-time data exchange and
intelligent communication among vehicles, infrastructure,
and other entities via wireless networks. Each vehicle,
equipped with an On-Board Unit (OBU) and sensors, acts
as a smart object that monitors the environment, shares
traffic information, and enhances road safety and efficiency
[4][5]. The Internet of Vehicles allows wvehicles to
communicate with each other and with roadside
infrastructure by employing specialized wireless
communication technologies to ensure low latency, high
bandwidth, and reliable message exchange. Key standards
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include IEEE 802.11p and the WAVE" (IEEE 1609.x)
framework, which enable real-time communication in
dynamic vehicular environments, and DSRC" designed for
short-range safety-critical applications [4]. The SAE J2735
standard further defines message structures, most notably
the Basic Safety Message (BSM), which vehicles broadcast
every 100 ms within their communication range to share
kinematic data such as position, speed, heading, and
acceleration with nearby nodes [8][9]. These messages
extend situational awareness and support safety applications
such as collision avoidance and cooperative driving. oV is
characterized by numerous dynamic entities that
continuously exchange information in real time. The key
characteristics of IoV can be summarized as follows

[4][5][10](11]:

No geographical restrictions: Vehicles can communicate
freely within their transmission range, broadening the scope
of potential threats.

High entity density: The number of connected vehicles
and other entities is very large.

Massive data exchange: Communication volume in the
network is extremely high.

Dynamic topology: Due to vehicle mobility, the network
structure and neighboring nodes change rapidly.

Short-lived links: Connections between nodes are
transient, often disrupted by rapid movement.

Unreliable wireless channels: Communication is affected
by road conditions, relative speed and direction, vehicle
types, and environmental obstacles.

Resource constraints: Vehicles have limited capacity to
store long-term interactions and lack global, network-wide
knowledge.

Scalability challenges: The number of nodes and
neighbors can increase significantly over time.

While this capability enables efficient traffic management
and intelligent transportation, it also introduces significant
security and reliability concerns due to the highly
interconnected nature of vehicles. The high volume of
communication and rapid changes in network topology
make secure and trustworthy interactions more critical than
ever [12].

2.2. Trust Management

The concept of trust management entails establishing
network communication only between trusted nodes. In
these models, nodes are typically assigned a trust score, and
are considered malicious if their score falls below a
predefined threshold. Trust management provides a
framework for evaluating the reliability of network nodes,
thereby ensuring secure and dependable interactions. It
continuously assesses node behavior, reputation, and
protocol adherence using trust scores, with particular

* Wireless Access in Vehicular Environments

emphasis on mitigating internal threats posed by malicious
authenticated nodes [1][2][3][4][5]. Therefore, the trust
management system is responsible for managing the real-
time and long-term trust of network nodes based on the
legitimacy of messages received from other nodes or on the
legitimacy of the nodes themselves.

In trust management, trust represents a node’s reliance on
another to behave as expected, encompassing both
individual-level trust and overall system reliability [8][13].
Systems comprise two main entities: the trustor (the
evaluating node) and the trustee (the evaluated node). Trust
evolves over time based on behavior and history and is
assessed using mechanisms that evaluate both direct
interactions and recommendations from other nodes

(2103][41[5].

In the IoV context, trust management evaluates node
reliability (vehicles and RSUs), validates exchanged data,
and detects malicious nodes. Effective frameworks enable
continuous management of short- and long-term trust based
on message legitimacy and node behavior. Attackers may
attempt to manipulate trust relationships or provide
deceptive information to compromise the system; therefore,
establishing a trust management framework to counter such
trust-related attacks is essential to strengthening the security
posture of IoV [2][3][4][5].

2.3. Trust Management Models

Trust management models in the Internet of Vehicles are
generally classified into three categories: data-centric,
entity-centric, and hybrid models [2][3][5].

Data-centric approach (what data is provided): These
models focus on evaluating the accuracy and reliability of
the content of exchanged messages, such as position, speed,
or event warnings, to detect misbehavior or attacks related
to data, regardless of the source of the data sender. Trust
assessment in this approach is usually short-term and does
not establish a long-term relationship between vehicles. A
major limitation is the dependence on sufficient data for
each event, while historical interactions are not utilized.

(2103114105)-

Node/Entity-centric approach (who provides the data):
These models focus on the reputation and reliability of
individual nodes by evaluating their past behavior and
interactions. Trust values are typically long-term and reflect
the historical performance of nodes. However, in scenarios
with limited interactions or short-lived communication
links, effective trust evaluation can be challenging

(2103114105)-

Hybrid Approaches: Hybrid approaches combine both
data-centric and entity-centric evaluations to provide a more
comprehensive assessment. They consider both the

 Dedicated Short Range Communications
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accuracy of received messages and the sender node's overall
behavior over time. While hybrid models generally offer
higher detection accuracy and robustness against a wider
range of threats, their trust computation process is
inherently more complex [2][4][5].

Trust Management Models

Data-
Centric

Figure 2. Trust Management Models

2.4. Components of Trust Management Systems

Trust management systems in IoV typically consist of three
key components [14]:

Trust Sources: This includes direct and indirect trust
[2][4][5]-

Direct Trust: Derived from historical direct interactions
between nodes. Factors influencing direct trust include
packet delivery ratio, similarity between nodes, familiarity,
interaction duration and frequency, and timeliness of
interactions [2][4][5][15][16].

Indirect Trust: Also known as recommendation-based

trust, it is computed from the recommendations of
neighboring nodes and considers factors such as
confidence in neighbors, positive/negative feedback, and
reputation [2][4][5].

Trust Architecture: Trust systems can be categorized as
centralized or decentralized [2][5].

Centralized Models: A central trusted server collects,
computes, and stores trust values for all vehicles. While
simple, these models are less suitable for highly dynamic
vehicular environments due to single points of failure and
scalability limitations [2][3][4].

Decentralized Models: Multiple nodes collectively
manage trust computation, improving scalability and
resilience against failures, and better accommodating the
dynamic and distributed nature of IoV networks [2][3][4].

Trust Computation Algorithms: Trust computation
algorithms can be classified into traditional and learning-
based approaches [2][4][5][15][17].

Traditional Algorithms: Include statistical or rule-based
methods such as weighted sum, weighted average, fuzzy
logic, entropy, and Bayesian inference. These algorithms
are computationally simple and fast [S][15][17].

Learning-Based Algorithms: Use machine learning or

deep learning techniques to compute more accurate,
dynamic trust scores, offering greater accuracy and
adaptability than traditional methods [5][15][17].

2.5. Attacks on Trust Management Systems

Due to the inherent characteristics of vehicular networks,
IoV trust management systems are vulnerable to a variety of
attacks by malicious nodes [18]. Common attack types
include:

Bad-Mouthing Attack: Malicious nodes provide false
negative feedback about honest nodes to reduce their trust
scores.

Ballot-Stuffing (Good-Mouthing) Attack: Colluding
malicious nodes provide false positive feedback to increase
trust scores of each other.

On-Off (ZigZag) Attack: Nodes alternate between good
and malicious behavior to avoid detection.

Selective Misbehavior Attack: Malicious nodes target
only specific nodes with false messages, causing
inconsistencies in trust evaluation.

Self-Promoting Attack: Nodes attempt to increase their
own trust scores by manipulating feedback without
necessarily targeting other nodes.

3. Related Works

This section reviews prior research on trust management in
vehicular networks, with the aim of establishing baselines
for subsequent research. We then categorize prior studies
based on our research contributions into two key areas: (i)
architectures and approaches for trust management models
in vehicular networks, focusing on decentralized and hybrid
designs; and (ii) learning-based approaches for computing
node trust scores, emphasizing graph-based models.

3.1. Baseline Works

Several baseline trust management models have been
proposed in vehicular networks and have since served as
reference approaches for subsequent studies. In [19], Xiao
et al. (2019) introduced the IWOT-V model, which was
inspired by the PageRank algorithm and designed to
evaluate trust by constructing an implicit trust graph from
dynamic interactions among vehicles. The architecture
employed a hybrid centralized—distributed structure in
which vehicles computed local trust values (LTVs) via
Bayesian inference, roadside units (RSUs) collected these
values, and a central system computed global trust values
(GTVs) using a Vehicle Rank mechanism. Simulation
results in a realistic urban scenario demonstrated high
accuracy in distinguishing trustworthy from untrustworthy
vehicles, even with up to 20% malicious nodes, which led
to its widespread use as a reference baseline. However, the
approach relied on a limited set of trust features, lacked
mechanisms to counter good-mouthing and bad-mouthing
attacks, and assumed fully trustworthy RSUs and central
servers. Building on this, in [20] Zhang et al. (2020)
proposed the AATMS system, which adopted a Trust Rank-
inspired strategy by emphasizing recent interactions while
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retaining a memory of past misbehavior. Local trust was
computed via Bayesian inference with a beta distribution
and an adaptive forgetting factor, whereas global trust was
computed by constructing a trust graph and applying a
modified Trust Rank algorithm. To improve robustness,
seed nodes were selected based on PageRank rankings
combined with social factors, and trust propagation
employed an adaptive decay factor to slow down sudden
trust increases while accelerating decreases. Simulation in a
highway scenario showed that AATMS outperformed
IWOT-V in resisting specific attacks, including Newcomer,
ZigZag, and Colluding. Nonetheless, AATMS still
overlooked common attacks such as good and bad
mouthing, was highly dependent on sufficient interactions
between vehicles (causing delays in sparse networks or for
newcomers), and maintained an inherently centralized
architecture, assuming fully reliable RSUs and trusted
authorities. Together, these baseline approaches highlight
the importance of dynamic trust evaluation but also reveal
limitations in scalability, feature diversity, and resilience
against a broader range of attacks, motivating the need for
more adaptive, decentralized, and Al-driven trust
management frameworks in the Internet of Vehicles.

3.2. Architecture & Approaches for TM Models

Beyond baseline trust models, several studies have focused
on designing specific trust architectures for vehicular
networks, often integrating decentralized mechanisms,
multi-criteria decision-making, or blockchain- and Al-based
approaches. In [21], PuCong (2021) proposed Trust Block
MCDM, a decentralized system in which vehicles
periodically upload locally computed trust values of
message senders to nearby RSUs. RSUs aggregate these
inputs using a multi-criteria decision-making framework
and encapsulate the resulting reputation values into blocks,
which are then competed for inclusion in the blockchain.
Simulation results in OMNeT++ indicated improved
detection of falsified messages and malicious vehicles;
however, reliance on simple statistical methods rather than
learning-based models limited adaptability in dynamic
environments. In [22], Zhang et al. (2021) proposed a
blockchain-assisted ~ Al-driven  trust = management
framework where vehicles use feedforward neural networks
to compute local trust values, which are then aggregated by
RSUs into global trust levels (GTLs). These GTLs are
recorded immutably on the blockchain, with cross-RSU
consensus ensuring consistency. While SUMO-based
simulations showed improved detection accuracy and
recall, the approach suffered from high computational
overhead at the vehicle level due to neural network
execution, and the use of simple averaging for global trust
aggregation raised concerns about adaptability to dynamic
IoV scenarios.

In a more advanced direction in [23], Wang et al. (2022)
proposed a deep learning—enabled trust management
framework coupled with blockchain. In this architecture,
RSUs employ deep learning to assess message reliability,
while a public blockchain is used to record traffic-related
events. A proof-of-trust consensus mechanism further

incentivizes vehicles with higher trust scores to participate
as block miners, thereby integrating trust management with
incentive structures. Although the model showed promising
detection rates in SUMO simulations across both dense and
sparse network settings, the blockchain component
remained largely conceptual, with evaluations focusing
primarily on the deep learning module. In [24], Cheong et
al. (2024) advanced this line of work with the PBTMS
model, which combines entity trust and path trust within a
multilayer architecture. By analyzing message paths
through RSUs and incorporating mechanisms such as
marker trust and dynamically updated thresholds, PBTMS
achieved higher accuracy, recall, and F-measure than
IWOT-V and demonstrated resilience against MITM, Black
Hole, and On-Off attacks. Nevertheless, its dependency on
fully trusted RSUs and reliance on basic weighted
aggregation limited its scalability in more decentralized oV
environments.

More recently, in [16], Wang et al. (2024) presented TM-
IoV, the first multi-label dataset dedicated to trust
management in the Internet of Vehicles. TM-IoV consists of
96,707 recorded interactions among 79 vehicles in a
realistic simulation of the city of Jinan, China. To capture
the dynamic nature of vehicular trust, nine key trust-related
parameters were extracted for each trustor—trustee pair:
Packet Delivery Ratio, Similarity, External Similarity,
Internal Similarity, Familiarity, External Familiarity,
Internal Familiarity, Reward and Punishment, and Context.
These parameters incorporate both direct and indirect
interactions, as well as behavioral history, making the
dataset particularly suitable for machine-learning—based
trust analysis. Intelligent malicious nodes were also
introduced, employing strategies such as On-Off attacks to
evade detection. The dataset was generated using a Java-
based IoV simulator, but it was not publicly released.
Moreover, the authors did not validate the dataset using
machine learning or deep learning models to assess its
reliability and effectiveness, which is a notable limitation.

Collectively, these works underscore the growing shift
toward decentralized, Al-integrated trust architectures. Yet,
they also reveal persistent challenges, including scalability,
computational overhead on vehicles, and the
oversimplification of trust aggregation methods.

3.3. Learning-Based Approaches

With the increasing complexity of [oV and the dynamicity
of malicious behavior, learning-based approaches have
emerged as a powerful direction for trust management and
misbehavior detection in the Internet of Vehicles.

In [25], Eziama et al. (2018) extended this line of research
by combining machine learning with deep learning in a
trust-oriented detection model. Their hybrid approach
modeled trust as a classification process, leveraging
Bayesian deep neural networks to capture both probabilistic
decision-making and generalization. While effective at
identifying malicious nodes, the model still relied solely on
exchanged data and did not incorporate historical behavioral
records, thereby reducing its robustness against adaptive
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attackers. In [26], El-Sayed et al. (2020) introduced an
entity-based trust management framework that combines
decision-tree classification for rule extraction with artificial
neural networks for retraining when trust estimation is
insufficient. Their model employed role- and distance-based
metrics, such as Euclidean distance, and demonstrated
superior performance compared to existing approaches.
This work highlighted the potential of hybrid ML-based
models but remained preliminary in its validation.

In [27], Siddiqui et al. (2023) addressed two critical
challenges: assigning weights to trust features and defining
threshold trust values for detecting malicious nodes. Using
the CRAWDAD IoT dataset (adapted for IoV), they
designed a dynamic machine-learning—based trust-
evaluation framework. By combining unsupervised learning
for ground-truth generation with supervised methods such
as Subspace KNN and Subspace Discriminant, their
framework achieved nearly perfect classification results.
However, reliance on a non-loV dataset raises concerns
about generalizability to real vehicular scenarios. In [28],
Wang et al. (2024) introduced the MESMERIC model,
using a machine learning model to assess trust. This model
accounts for direct and indirect interactions and includes
contextual information, such as vehicle type and operational
scenario. This model was evaluated using metrics such as
precision, recall, and F1-score and showed high accuracy
(up to 100% in urban scenarios) in identifying malicious
nodes. In this paper, the authors used trust-related
parameters such as direct trust (interaction success rate,
familiarity, similarity, reward, and punishment) and indirect
trust (feedback from neighbors) to evaluate the model. The
machine learning algorithms K-Nearest Neighbor and
Random Forest were also used to assess trust. The
achievements of this paper include high precision, recall,
and F1-Score on the Epinions dataset. However, one
limitation of this paper is that the Epinions dataset is used,
which is not related to vehicular networks (it concerns trust
in social networks). Therefore, this dataset does not cover
the dynamic nature of IoV.

In [29], Khan et al. (2024) combined deep neural networks
with trust management for intelligent transportation
systems. Their framework, trained on 150,000 samples
including traffic patterns and sensor data, achieved 90%
accuracy in identifying abnormal behavior. Trust scores
were computed in the range [0,1], enabling the exclusion of
nodes with low trust values. Despite outperforming classical
ML algorithms such as Random Forest, SVM, and Naive
Bayes, the dataset used was not IoV-specific and lacked
comprehensive trust-related parameters. Finally, in [30],
Kushardianto et al. (2024) proposed a two-stage anomaly
detection framework for IoV, employing Random Forest,
LSTM, GRU, and DBN on two distinct datasets. Their
results demonstrated improved detection performance
compared to single-stage models, yet the approach
remained highly dependent on data quality and introduced
computational overhead that may limit real-time
applicability. Moreover, trust evaluation was limited to
data-level interactions, thereby precluding the formation of
long-term or global trust.

Taken together, these studies underscore the growing
reliance on machine learning and deep learning for trust
management and misbehavior detection in IoV. While such
approaches have demonstrated remarkable improvements in
accuracy and robustness, their practical deployment is
constrained by limitations including limited dataset
availability, limited generalizability beyond non-loV
environments, and the integration of long-term behavioral
history.

3.4. Graph-Based Models

Graph-based approaches have recently been proposed for
modeling trust relationships. By leveraging graph neural
networks (GNNs) and related architectures, these
approaches aim to capture both the structural and contextual
dependencies of trust, moving beyond traditional feature-
based methods.

In [31], Jiang et al. (2022) introduced GATrust, a novel
framework for pairwise trust evaluation in social networks.
While most existing methods relied heavily on graph
convolutional networks (GCNs) and largely ignored user-
specific  contextual features, GATrust combined
multifaceted user information—including contextual data,
topological structure, and locally formed trust relations—
into a unified model. By integrating graph attention
networks (GAT) with GCN, the framework assigned
adaptive attention weights to different user features and
learned latent trust factors between trustor—trustee pairs.
Experiments on two real-world social trust datasets
demonstrated improved accuracy in predicting trust.
Although developed for online social networks, GATrust
highlights the potential of attention-based graph models for
IoV trust management, where contextual and relational
features are equally critical. Building on the direction in
[32], Wang et al. (2024) proposed TrustGuard, a graph-
based trust evaluation model that incorporates temporal
dynamics, attack resilience, and explainability. Operating in
a decentralized architecture, TrustGuard treated trust
interactions as temporal graphs and introduced a
multilayered design consisting of: a snapshot input layer
(time-based trust data), a spatial aggregation layer (defense-
aware local aggregation resilient to attacks such as fake
node injection), a temporal aggregation layer (attention-
based learning of trust evolution), and a prediction layer for
final trust computation. Experiments on Bitcoin-OTC and
Epinions datasets under simulated attacks showed that
TrustGuard outperformed state-of-the-art GNN models in
both short- and long-term trust prediction, while remaining
robust under adversarial conditions. Despite its success,
adapting TrustGuard to IoV remains challenging due to the
scarcity of real vehicular trust datasets. Most recently in
[33], Favour et al. (2025) presented a GNN-based
framework for malicious node detection in vehicular
networks, marking one of the first attempts to apply deep
graph learning directly to IoV trust management. The
proposed architecture integrates message-passing layers,
attention mechanisms, and readout layers for node-
embedding aggregation, supplemented by dropout and
normalization to enhance model stability. Temporal aspects
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of trust were incorporated through methods such as time
encoding and RNN-based integration. While conceptually
innovative, the study lacked detailed implementation
descriptions and did not provide experimental results,
leaving its effectiveness unvalidated.

Together, these graph-based approaches demonstrate the
potential of GNNs and attention mechanisms to advance
trust management in IoV. They emphasize the need to
account for contextual, structural, and temporal dimensions
of trust while maintaining robustness against attacks.
Nevertheless, their practical applicability in vehicular
environments remains constrained by computational
overhead and the limited availability of realistic IoV trust
datasets.

4. Materials and Methods

In this section, we introduce the proposed methodology for
trust management in the Internet of Vehicles. Connected
vehicular networks are inherently dynamic and
decentralized, posing significant challenges for trust and
security [26]. This work presents a hybrid, decentralized
trust management framework that integrates data-driven
(message-content-based) and node-centric (behavior-based)
evaluations to manage trust at both local and global levels.
Unlike approaches that rely solely on recent interactions, the
model incorporates historical behavior, reducing false
classification of honest nodes and penalizing consistently
misbehaving nodes. This framework employs a feedback-
and consensus-based two-tier approach to address the
limitations of centralized methods, including single points
of failure and scalability issues, while providing accurate,
dynamic, and fully decentralized trust evaluation [8]. The
proposed model operates on a two-layer architecture: the
local layer, deployed on vehicles, computes trust scores
based on direct interactions and extracted relevant
parameters such as position, speed, heading, and RSSI using
the proposed LTrustAssess Algorithm. The global layer,
implemented on RSUs, aggregates trust-related reports
from vehicles and computes global trust scores using a
proposed deep learning model, Temporal GAT with LSTM,
combined with a consensus mechanism. So the proposed
model is organized into three stages:

(i) Local Trust Assessment, where vehicles evaluate peers
based on direct interactions;

(i) Trust Reporting, where trust-related evidence is
transmitted to RSUs that are in the vehicle's communication
range;

(iii) Global Trust Assessment, where RSUs aggregate
reports and compute final trust scores of the nodes.

The framework enhances both the reliability and security
of connected vehicular networks, supporting robust
decision-making in highly dynamic environments.

4.1. Local Trust Assessment

Local trust assessment is performed periodically by
vehicles every 30 seconds, focusing on interactions that
occurred within the preceding interval. The process adopts
a hybrid approach, combining data-driven evaluation
(analysis of received messages) and node-centric evaluation
(assessment of sender behavior).

In this model, Vehicles broadcast Basic Safety Messages
every second in their communication range. This model
assumes that vehicles are authenticated. That is, all vehicles
are pre-registered in the network and join it using a
certificate issued by a Certificate Authority (CA). This
means that only authorized OBUs can send/receive safety
messages.

For data-driven evaluation, each Basic Safety Message
received undergoes a set of basic checks by the receiver
node, based on the F2MD [8] framework. These include
both basic Plausibility (e.g., acceptable range, position,
speed, heading, acceleration) and consistency check (e.g.,
position, speed, heading, position-speed correlation),
computed over the last five messages received from the
sender within the last 15 seconds. Anomalous behaviors,
such as sudden appearance or abnormal message frequency,
are also detected. Each check assigns a continuous score
between 0 and 1 to the message, and the geometric mean of
the check scores is used to calculate BsmScore, reflecting
message trustworthiness. Different types of checks
(plausibility & consistency) applied to each received
message are listed in Table 1.

Table 1. List of Plausibility & Consistency checks applied on
the received messages

Checks

Kalman Filter-Based

Consistenc )
y Anomaly Detection

PlausabilityCheck

Check
Check
Proximity Position Kalman Position
Plausibility Consistency Consistency

S Speed Kalman Speed
Range Plausibility p - P

Consistency Consistency
Position

Plausibility

Position Speed
Consistency

Kalman Position Speed
Consistency
KalmanPositionAcc
Consistency

- Position Speed
Speed Plausibility Max ICIonsisF;ency
Position Heading

Consistency

In parallel, node-centric evaluation computes sender-
related trust features, including position similarity, speed
similarity, heading similarity, familiarity (interaction
frequency and interaction duration), packet delivery ratio,
and event contribution. These features capture the sender’s
behavioral consistency and reliability over time.

The proposed LTrustAssess algorithm integrates these
factors into a weighted scoring system with five primary
components: Misbehavior Factor, Context Factor,
Interaction Factor, Quality Factor, and Event Factor. The
resulting score represents the local trust the receiver assigns
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to the sender. Vehicles subsequently use this local
trust score to evaluate the reliability of event-driven
messages (WSMs) received from other node

Algorithm 1: LTrustAssessAlgorithm
Pseudocode for Local Trust Assessment Algorithm

Input: Data Related Features + Node Related Features (ALL features are between @ - 1)
Output: LocalTrustScore (0-1)
Initialize
TrustScoree = 0.7
W1, W2, W3, W4, W5 = (0.35, 0.30, 0.15, 0.10, 0.10)
Data-Related Features
AvgBSMScore « Avg(BSMScores)
AvgNormalizedRSSI < Avg(RSSINoramalized)
Node-Related Features
TotalSimilarity < Avg(PosSimilarity, SpeedSimilarity, HeadingSimilarity)
Familiarity < f(duration, ReceivedBSMCount)
PDR « f(Expected Messages, ReceivedBSMCount)
EventCoopScore <« f(EventCoopScore, NotFakeEventRatio)
PDR_RSSI Combined « Avg(PDR, AvgNormalizedRSSI)
Execute
MisbehaviorFactor (MF) « AvgBSMScore
ContextFactor (CF) « TotalSimilarity
InteractionFactor (IF) « Familiarity
QualityFactor (QF) <« PDR_RSSI_ Combined
EventFactor (EF) « EventContributionScore
Calculate Sender Local Trust Score
LocalTrustScore « (W1 * MF) + (W2 * CF) + (W3 * IF) + (W4 * QF) + (W5 * EF)
LocalTrustScore « f(LocalTrustScore, dataWeight)
END

Familiarity: Measures the degree of prior interactions
Features used in LTrustAssess and their  between sender and receiver, considering the number
computations are as follows: of messages exchanged and the duration of interaction.

AvgBSMScore: The average score of all BSM
messages received from a sender in the last 30 seconds. Log(1 + ReceivedCount)
Each BSM is evaluated for plausibility and consistency MessageCountyormatizea = Log(1 + MaxReceived)
using the F2MD framework [8], identifying abnormal
behaviors such as sudden appearance, irregular ) Log(1 + Duration)
frequency, or message modification. Duationyormatizea =

Log(1 + MaxDuration)

Normalized RSSI: Normalized Received Signal

. ‘ s Familiarity = 0.3 * MessageCountyormatizea + 0.7
Strength Indicator, representing the communication

link quality. Higher RSSI indicates stronger * Durationyoramatizea
connectivity and increases trustworthiness.
1 Packet Delivery Ratio (PDR): Indicates
RSSInormatizea = 1 + e-0-15(rssi+80) communication reliability by comparing expected

versus received messages over the interaction duration.
Total Similarity: Average similarity between the

sender and receiver in terms of position, speed, and

heading during the last 30 seconds. ExpectedMessages = duration * MessageRate + 1
1-Pos dif ference )

PoSsimitaricy = Max(0
Stmilarity ( ' Max Plausible Range MessageReceivedCount

PDR =

_ 1-Speed dif ference
SpeedSl'm”aTify = Max(0, Max Plausible Speed) ExpectedMessages
Headingsimiiarity = Event Contribution (EventFactor): Assesses the
, . . .
Mas(0, 1oHeading Difrerrnce sender’s cooperation and accuracy in reporting events.
ax (0, 180 ) Includes a reward/punishment mechanism that
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penalizes incorrect event reports and rewards accurate
contributions.

ExpectedEvents = duration * EventFrequency

EventReceivedCount

EventRatio =
ExpectedEvents

EventDetectedAsFake
EventReceivedCount

NotFakeEventRatio =1 —

CooperationScore = X + 0.5 * EventRatio ()
{Where- if eventRatio < I then X = 0.5 and if eventRatio > 1 then X =1}

EventFactor

_ (Avg(CooperationScore, NotFakeEventRatio) — 0.25)

on vehicles and focuses trust evaluation on short-term
interactions. Consequently, a global trust assessment
must be performed at the RSU level.

The WSM_Report message sent from vehicles to
RSUs every 30 seconds includes the following trust-
related parameters, which RSUs use to compute global
trust scores:

Message  WSM_Report: Message Sent

Vehicles to RSUs every 30 seconds

from

1

Data weight: To avoid premature judgments when
limited observations exist, a Data weight factor (based
on ReceivedBSMCount) moderates the influence of
freshly computed scores versus the initial/default trust
(0.7). With fewer messages, the algorithm favors
cautious trust.

MessageReceivedCount
10

Data_Weight = min (1,

The output LocalTrustScore ranges between 0 and 1,
reflecting the sender node’s trustworthiness from the
receiver’s perspective. These scores are then used to
evaluate the reliability of event-driven messages
(WSMs) and are reported to RSUs in the WSM_ report
message for subsequent global trust assessment.

LocalTrustScore = (LocalTrustScore * DataWeight) +
(TrustScorey * (1 — Data_Weight))

4.2. Interaction Reporting to RSUs

Given the rapidly changing characteristics of oV, in
which neighboring nodes frequently change, and the
number of neighbors varies significantly [5], and
considering the limited computational resources
available in vehicles [4], trust assessment cannot be
efficiently performed solely at the vehicle level. To
address this, each receiving vehicle maintains
interaction records with other nodes over a 30-second
interval. After computing the local trust score for each
sender node, the vehicle generates a WSM_Report
message reporting interactions during the interval and
sends it to the nearest RSU(s) within its
communication range.

Given the short-lived and highly dynamic
interactions between sender and receiver nodes,
vehicles discard these interaction records after
reporting. This design reduces computational overhead

ReceiverPseudoId « Pseudo-ID of BSM message
receiver(Reprter to RSU)

SenderPseudoId <« Pseudo-ID of BSM message
sender

ReceivedBSMCount « Number of received BSMs

AvgBsmScore < Average(BSMScores)

Familiarit «
Sender)

InteractionHistory(Receiver,

AvgPosSimilarity «  Average  position
similarity between (R,S) in BSMs

AvgSpeedSimilarity « Average speed
similarity between (R,S) in BSMs

AvgHeadingSimilarity <« Average heading

similarity between (R,S) in BSMs

FirstInteractionTime <« Timestamp of first

interaction

LastInteractionTime <« Timestamp of Last
interaction

Duration « LastInteractionTime -
FirstInteractionTime

AVgRSSI < Average RSSI of received BSMs

PDR <« PacketDeliveryRatio (communication
quality)

EventFactor « Event interaction score

CalculatedTrustScore <« Local
(from LTrustAssess formula)
ExitTime <« Report submission time (end of 30s

window or node exit)

trust score

4.3. Global Trust Assessment

Global trust evaluation is performed by RSUs,
which receive WSM_Report messages from multiple
vehicles within their communication range at 30-
second intervals. These messages contain trust-related
feedback from receiving vehicles regarding sender
nodes, summarizing interactions during the reporting
interval. RSUs aggregate these reports and, after a
network-dependent interval (shorter for high-density
networks and longer for low-density networks; 5000 s
in our simulation), compute global trust scores for all
vehicles that were active in their coverage area. To
provide a comprehensive analysis, RSUs must account
for temporal variation and repeated interactions when
evaluating each node’s behavior.
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To model these interactions, RSUs construct a
feedback graph in which nodes represent vehicles and
edges represent trust feedback between sender-receiver
pairs [34]. In this graph, edges are directed from
receivers to senders, and the value of each edge
corresponds to the predicted trust score for that pair
from the receiver's perspective. RSUs first predict trust
scores for each sender-receiver pair over time based on
historical interactions and behavioral changes to
compute the edge score between each pair, and then
aggregate the edge scores from multiple receivers to
compute the overall global trust score for each sender
node (graph vertex) [34][35][36][37][38]. The global
trust score prediction will be done as follows.

4.3.1. Predicting Global Trust Scores

Aggregated global trust scores are predicted by RSUs
using a pre-trained deep learning model trained on a
simulation-generated dataset of vehicle interactions.
To effectively model the network as a feedback graph,
we employ Graph Attention Networks (GAT) [39] to
capture the heterogeneous importance of trust
feedback across vehicles.

In this model, each vehicle is represented as a node
and trust feedback between sender-receiver pairs as
directed edges, with associated node and edge features.
GAT learn node embeddings by aggregating behavioral
patterns from neighboring nodes through a message-
passing process [35][37]. Also, by using attention
mechanisms to assign different weights to neighbors,
reflecting their relative importance. In the context of
trust, these weights are learned based on trust-related
parameters [39].

For this, RSUs first transform received interaction
reports into sender-receiver pairs. The model then
considers temporal sequences of interactions between
each pair, incorporating all prior interactions at earlier
time intervals from the perspective of different
receivers, based on the history of the sender's
interactions, to predict a pairwise trust score over time
(edge trust). These predicted edge-level trust scores are
aggregated across all receivers to compute the final
global trust score for each sender node. To incorporate
both temporal dynamics and network structure, we
propose a Temporal GATWithLSTM model that
combines graph attention with LSTM layers to capture
spatial and temporal patterns in vehicle interactions.
This approach enables RSUs to accurately predict
dynamic trust levels for each vehicle, ensuring robust
and scalable trust evaluation in highly dynamic
vehicular networks.

4.3.2. TemporalGATwith LSTM

The proposed Temporal GATWithLSTM model is a
hybrid deep learning architecture that integrates Graph

10

Attention Networks (GAT) & Long Short-Term
Memory (LSTM) networks to predict the aggregated
global trust scores of vehicles in highly dynamic
vehicular networks. This model can capture both
graph-structured interactions among vehicles and the
temporal evolution of interaction features.

Model Architecture: The proposed model is a hybrid
model as follows:

LSTM layer: to model the temporal sequence of
interactions between sender-receiver vehicle pairs.
This layer processes the changes of input features such
as AvgBSMScore, AvgSpeedSimilarity,
AvgPosSimilarity, AvgHeadingSimilarity, Familiarity,
Event Contribution, and PDR_RSSI Combined over
time, generating hidden states that capture historical
interactions and contextual information for each pair.
For each sender-receiver pair, multiple interactions
may occur over time. The LSTM layer processes these
temporal sequences and predicts the edge-level trust
score for the latest interaction. Attention mechanisms
ensure that interactions with more messages
exchanged (high quality), longer durations, and more
recent occurrences are weighted more heavily.
ensuring that critical interactions have greater
influence on edge-level trust scores. These edge-level
trust scores are referred to as Receiver Feedback on the
sender node's trust in this work. These values are then
used in the GAT layer for node-level aggregation.

LSTM Attention (Duration — Recency - BsmCount)

o)
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15
Feedback of Interaction Evidence (Vector of Input Features) Per Pair
» Assign Attention Weight to each Interaction
Plus - ExitTime — Duration - BsmCount
Twien .
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Figure 3. LSTM Attention

GAT layer: to represent the vehicle trust network as
a graph of interactions between the sender and
receiver vehicles, using the output of the LSTM and
Attention Layer, where nodes are vehicles and
incoming edges represent trust feedback from
different receivers to senders. Since different
feedback from different receivers doesn’t have the
same weight for the sender, this layer also uses an
attention mechanism to assign different weights to
different edge trust scores according to the
importance of each receiver node. Then, Aggregates
weighted edge-level trust scores (feedbacks) from
different receiver nodes to compute node-level
(aggregated) trust scores that reflect a comprehensive,
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network-wide perspective. Weights are assigned
based on multiple factors, including:

Source Node Trust: Trustworthiness of the receiver
node providing feedback.

Source Node Recency: Recency of the interactions
of the node providing feedback.

Source Node Degree: Degree of the receiver node
(number of interactions in the network).

Feedback freshness: Feedback freshness based on
the time elapsed since the last interaction.

Graph Attention (SourceNodeTrust — Edge Recency — SourceNode Recency — SourceNode Degree)

/'.;’('(_‘A\. From Edge Trust Scores to Node Trust Score
,/" N i (Iterative)
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W TrustFeedback ﬂ.‘ T -
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Figure 4. Graph Attention

Since edge weights depend on the trustworthiness of
receiver nodes, which may themselves act as senders
in other edges, an iterative procedure is needed for
predicting the nodes' trust scores, which will be done
as follows:

Initial trust scores for all receiver nodes are set to
Zero.

Node-level trust scores are computed based on
Source Node Recency, Source Node Degree &
Feedback freshness.

Updated node-level trust scores are used to
recalculate attention weights and refine trust
aggregation.

Iteration continues until convergence (typically 3—
5 iterations).

Therefore, from the trust scores of different edges
incoming to a node, we arrive at a node trust score. This
trust score is referred to as RSU feedback on the sender
node's trust. Figure 5 shows the structure of the
proposed Temporal GATwithLSTM model.

Edge Trust Y
Iterative Node-Level

Trust Aggregation

Temporal Module
GAT

!

Node
Embeddings

Node Features

Node

Graph Attention

Representation

Figure 5. Structure of the proposed
Temporal GATwithLSTM
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4.4. Decentralized Consensus

To maintain decentralization, RSUs share their
predicted aggregated trust scores with neighboring
RSUs and use a consensus mechanism to determine the
final global trust score for each vehicle, which is called
the network feedback on the sender node trust. This
approach ensures that predicted global trust is
consistent and globally validated across the network,
providing a robust, accurate, and decentralized view of
trust.

4.5. State Update and Malicious Node Detection

Once the aggregated global trust score for each sender
node is established after consensus, the network
completes the current state (State N). To maintain
temporal continuity in trust evaluation, the final global
trust score of each node in the current state is calculated
as the average of the newly computed global trust score
and the final global trust score from the previous state:

Ty + fTy—1
fry = S
® fTy = Final Global Trust at state N

® cTy = Calculated Global Trust at state N

® fTy_q = Final Global Trust from previous state

Note: Newly joined nodes start at State 0, with an initial
global trust score of 0.7. At the end of each state, after RSU
consensus, the global trust scores are updated across the
network according to the above formula, ensuring that trust
evaluation reflects both current behavior and historical
performance.

The proposed trust management model enables the
detection of malicious nodes using aggregated global
trust scores. After predicting trust values using
Temporal GATWithLSTM, a threshold-based
mechanism is applied. Various thresholds between 0.4
and 0.7 (in increments of 0.05) were evaluated, and the
optimal threshold was selected to maximize detection
accuracy. A node is classified as malicious if its global
trust score falls below the threshold; otherwise, it is
classified as genuine.

Malicious, if Trust(i) < threshold (0.65)

Genuine, if Trust(i) > threshold (0.65)

In this study, a threshold of 0.65 was determined to be
optimal for distinguishing malicious nodes, enabling
the network to punish or isolate such vehicles
accordingly.

5. Performance Evaluation

To evaluate the performance of the proposed model,
extensive simulations were conducted to assess the
LTrustAssess algorithm and to generate the dataset
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required for evaluating the Temporal GATwithLSTM
model. So, the evaluation of the proposed model is
organized into two main components: (i) vehicular
network simulation for generating realistic interaction
data and modeling malicious behavior for generating a
dataset needed for further analysis, and (ii)
implementation of the deep learning trust model for
global trust prediction and malicious node detection.

5.1. Vehicular Network Simulation

Given the complexity and cost of deploying trust
management models in vehicular networks, the
proposed model is evaluated through simulation.
Vehicular interactions are simulated to generate
datasets for local trust computation, RSU-level trust
reporting, and subsequent deep learning-based trust
aggregation.

The simulation is implemented using the open-source
VEINS?® framework [40], which combines OMNeT-++
(a discrete event network simulator) and SUMO*
(microscopic traffic simulator). VEINS supports
realistic V2X scenarios by integrating road traffic
patterns from SUMO with wireless communication
components, including an IEEE 802.11p MAC/PHY
model in OMNeT++. The simulator therefore extracts
and maintains the following per-message items during
each 30-second local window from vehicle-to-vehicle
interaction logs: BSMScore (per-message
plausibility/consistency score), Familiarity,
Position/Speed/Heading Similarities, AvgRSSI, Packet
Delivery Ratio (PDR), event-related metrics (e.g.,
EventContribution, NotFakeEventRatio), and other
intermediate values required by the LTrustAssess
pseudocode described earlier to compute the local trust
scores of each vehicle.

For V21 WSM Report messages, four RSUs are
deployed along roads in the simulation map. Their
coordinates are chosen to ensure uniform coverage,
such that the entire simulation area is within RSU
coverage. Each RSU receives 30-second trust reports
from vehicles currently inside its communication range
and uses them for the RSU-level aggregation/learning
components.

To incorporate malicious behaviors, the simulation is
extended using the F2MD?® framework [8], an open-
source extension of VEINS designed for modeling
attacks and misbehavior in vehicular networks. F2MD
enables the injection of various malicious data-level
actions, particularly at the BSM level, such as false
message injection, data manipulation, and intentional

3 VEhicles In Network Simulation

4 Simulator of Urban MObility
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delays [40][41]. The implemented data-level attacks
are as follows:

ConstPos — broadcasts the same (constant) position
in every BSM.

RandomPos — broadcasts a random position
sampled from the simulation area.

Const PosOffset — broadcasts the same (constant)
position plus a bounded random offset.

RandomPosOffset — broadcasts the real position
plus a bounded random offset.

ConstSpeed — broadcasts a constant speed in all
BSMs.

ConstSpeedOffset — broadcasts the same (constant)
speed plus a bounded random offset.

RandomSpeed — broadcasts a random speed with a
specified upper bound.

RandomSpeedOffset — broadcasts the real speed
plus a bounded random offset.

StaleMessages — transmits authentic-looking but
delayed (stale) BSMs (fixed delay before broadcast).

DoS, DoS Random, DoS_Disruptive — increases

BSM transmission frequency to flood the wireless
channel (can be targeted or random) to disrupt
communication availability.

Disruptive — repeatedly retransmits an older BSM
from its history to confuse neighbors (replay of
previously valid messages).

EventualStop — broadcast the speed = 0 in order to
inject eventualStop.

DataReplay — selects a target and replays that
target’s past messages with a delay, creating an
apparent tailing behavior (two vehicles appearing to
travel closely).

Plus, these data-related attacks, some additional trust-
feedback related attacks were developed and integrated
into the F2MD framework for implementing trust-
related attacks. The implemented attacks are:

Bad-Mouthing (False Negative feedback) — the
malicious reporter lowers the reported local trust for
honest nodes. Specifically, the malicious reporter
probabilistically reduces the computed sender-node
trust score within a bounded range before sending it to
the RSU. The goal is to cause false accusations and
isolate honest nodes.

Good-Mouthing (Collusion / False Positive
feedback) — the malicious reporter increases reported
trust within a bounded range for colluding malicious

5 Framework for Misbehavior Detection
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peers to protect malicious nodes and bias the global
aggregation.

generated from the simulation, where Table 3 shows
the parameters used in this dataset.

Selective Misbehavior Attack — Malicious node
attacks only some honest nodes and displays
completely honest behavior towards some other nodes.

Table 2. Simulation Details

These attacks are pairwise oriented and are defined as Paraeter | Value
. Network simulator OMNeT++ 5.0
related to the edges in the graph. =
V2X Traffic Simulator SUMO 0.25.0

For implementing these attacks as realistically as Framework VEINS 4.4
possible, the ZigZag (On/Off) attack is included for Malicious Nodes Framework F2MD
both data-layer and feedback attacks. In this situation, Simulation arena (urban) 6899 M * 5889 M
a malicious node initially behaves honestly for some Simulation Time 5000 Seconds
time but subsequently injects dishonest behavior in Event start time 75 Seconds
certain interactions. Number of Vehicles +550

Percentage of Malicious Nodes 30 %

In our experiments, the Ulm traffic scenario is MAC Protocol |EEE 802.11p
employed, which is a realistic vehicular traffic scenario Radio Propagation Model Simple Path Loss
for IoV networks. The mobility traces of this scenario Data length 1024 bit
are generated using SUMO, while integration with Header Length 256 bit
OMNeT++ is performed through the VEINS Initial Trust Score 0.7
framework. The corresponding map of Ulm is
extracted from OpenStreetMap and depicts an urban Tx Power 20 mw
environment with high vehicular mobility. In this real- Bit Rate 6 Mbps
world scenario, vehicle interactions are logged MinPowerLevel -89 dbm
continuously over a 24-hour period and made available Noise Floor -98 dbm
within the F2MD framework [8]. Antenna Offset Y 0 Meter

App Layer Header Length 80 bit

Then, 30% of vehicles are randomly selected as Beacon Interval 1 seconds
attackers; in 70% of cases, they inject data-level Frequency Band 59 GHz
attacks, and in the remaining cases, they cause Max Interference Distance 1000 Meters

feedback corruption. The simulation of the Ulm
scenario runs for 5000 seconds, where more than 550
vehicles interact with each other. The interaction logs
are stored and subsequently used to generate the
dataset. Figure 6 illustrates the simulation
environment, and Table 2 shows the simulation details.

During simulation runs, WSM_Report messages and
ground-truth attacker labels are logged per interval to
generate the IOV_DS dataset. The generated dataset is
then used to train and test the proposed RSU-level deep
learning Temporal GATWithLSTM model for global
trust prediction and malicious node detection. Figure 7
shows the sample rows of the IOV _DS dataset

Figure 6. Simulation of the proposed model

Figure 7. sample rows of the IOV_DS generated dataset
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Columns

Receiver Pseudold

Received BsmCount Avg BsmScore

AvgPosSimilarity AvgSpeedSimilarity

First Interaction Time Last Interaction Time
fTrust Calculated TrustScore
(Ground Truth) (Feedback Trust)

5.2. Implementing Proposed
Temporal GATwithLSTM deep learning model

In this section, we describe the implementation of the
proposed deep learning—based trust management
model, Temporal GATwithLSTM, and its training on
the IoVDS dataset generated from the realistic Ulm
simulation. The implementation is carried out in
PyTorch. The implementation pipeline consists of five
main stages: (i) feature definition, (ii) data
preprocessing, (iii) sequence preparation, (iv) model
design and training, and (v) model evaluation.

Feature definition: The proposed model uses a set of

trust-related  features, including AvgBSMScore,
Familiarity, AvgPosSimilarity, AvgSpeedSimilarity,
AvgHeadingSimilarity, =~ AvgRSSI, PDR, and
EventFactor, as input features. Additional features
(e.g., SenderPseudold, ReceiverPseudold,
ReceivedBSMCount, Duration, ExitTime) are also
employed for node pairing and temporal modelling...
interaction structuring. Labels include fTrust and
senderMbType and are used for supervised training
and evaluation.

Data Preprocessing: The dataset undergoes several
preprocessing steps:

e Cleaning: Removing missing values in critical
fields (ExitTime, fTrust, AvgRSSI) and replacing
invalid numeric values (e.g., negative
ReceivedBSMCount) with zero.

e Feature Engineering: A combined feature,
PDR_RSSI Combined, is created to represent link
quality more comprehensively.

o Standardization: Features are standardized using
zero mean and unit variance for faster convergence.

e Class Weighting: Since trust values are unevenly
distributed, target values are divided into ten bins,
and inverse-frequency weights are computed.
Lower trust bins are further emphasized to improve
the detection of malicious nodes.

Sequence Preparation: Since trust changes
temporally, the dataset is grouped by sender—receiver

Sender PSFHHP&}'% Columﬁ%

Familiarity
AvgHeadingSimilarity
Duration

EventFactor
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Receiver MbType
(Ground Truth)

,e t%gaset

AvgRSSI
AvgTotalSimilarity
PDR

ExitTime

pairs and sorted into sequences. Variable-length
sequences are padded to a fixed max sequence length,
enabling batch processing with the LSTM component.

Models’ definition and training:

Temporal GATwithLSTM: The main model
integrates temporal learning and graph attention
mechanisms. By integrating these mechanisms, the
model captures both the temporal dynamics and the
structural dependencies of trust in [oV networks.

Architecture: This model consists of 2 main
components.

RNN Component (Temporal Module): A
bidirectional LSTM  processes sequences of

interactions, with attention mechanisms emphasizing
more recent interactions, longer ones, and those with
higher BSM counts within a sequence (LSTM
Attention).

Graph Component (Spatial Module): Vehicle
interactions are represented as a directed graph, with
nodes denoting vehicles and edges denoting trust
feedback. Node features include degree and average
recency. Two GAT layers with multi-head attention (8
heads) learn structural dependencies, prioritizing
feedback (edges) from neighbors with stronger
influence, based on recency, degree, and sender
trustworthiness. Ensuring that the final node trust score
is computed as a weighted aggregation of multiple trust
feedbacks (Graph Attention). After each GAT layer,
there is a LayerNormalization, ReLU Activation &
dropout set to 0.2. The outputs of the Dropout layers
preceding each GAT layer are combined using the
Residual_weight. Finally, using an iterative method,
the trust scores of the sender nodes are predicted using
the GraphAttention mechanism.

Training: To train the proposed model, the dataset is
split into training and validation sets at an 80-20 node-
pair ratio. Then, the model is trained using the class
weights computed during preprocessing and a
combined weighted loss function comprising Weighted
MSELoss (with a hinge term to penalize high trust
scores for malicious nodes) for the regression
component and BinaryCrossEntropyLoss for the
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classification component. These loss functions are
balanced with coefficients a = 0.3 and f = 0.7 to
prioritize classification over regression. To train the
model, the AdamW optimizer with an initial learning
rate of 0.0025 is used, and weight decay=0.0001 is
also applied to reduce the risk of overfitting.
Additionally, a learning rate planner dynamically
adjusts the optimizer's learning rate by a factor of 0.5
based on model performance to improve convergence.
An Early Stopping mechanism with patience 20 is also
defined, indicating the number of epochs the planner
waits for the validation loss to recover. The model is
trained for a maximum of 300 Epochs, and in each
epoch it produces edge- and node-level trust-score
predictions and classification probabilities. This
process is repeated, updating the output until stable
changes in trust values are achieved. The model with
the best checkpoint (i.e., the lowest validation loss) is
saved. The model is trained to predict Temporal Trust
as a proxy label, defined as the exponentially weighted
average of historical trust scores (fTrust) across
interactions of a pair. The pseudocode for calculating
TemporalTrust is shown below.

Algorithm 2: ComputeTemporalTrustScore

Pseudocode for Computing TemporalTrustScore
as ProxyLabel

Input: InteractionlLevelTrustScores
Output: TemporalTrustScore
Initialize
Decay_rate = 0.3
finalTrustScore = Interaction Level TrustScore
ExponentialDecayWeights
(NumberOfInteractions - 1))
MessageQualityWeights
Capped to max 30) / Log(36)

exp(-decay_rate *

Log(BSMCount where

DurationWeights = Log(duration) /
Log(max(duration))
OveralliWeights = ExponentialDecayWeight *

MessageQualityWeights * durationWeights
OveralllWeigths = OverallWeights /

SUM(Overal liWeights)

TemporalTrust = (fTrust * OverallWeights) - for
each Interaction in senderReceiverPairSequence
END

5.3. Results and Discussion

In this study, to evaluate the performance of the
proposed model to assign trust scores and detect
malicious nodes, the criteria defined in the confusion
matrix have been used to calculate the True Positive
(TP), True Negative (TN), False Positive (FP), and
False Negative (FN) parameters. Then, based on these
values, the following key evaluation criteria, including
Precision, recall, accuracy, F1-score, true positive rate,
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and true negative rate, have been calculated, which are
mainly used to examine the feasibility of the proposed
trust model [42]. This section analyzes the
performance of the proposed trust management
framework through two evaluation levels: (i) vehicle-
level (local trust computation) and (ii) RSU-level
(global trust aggregation using deep learning). The
evaluation focuses on two key aspects of trust
management models: detection capability (the ability
to distinguish between genuine and malicious nodes)
and resilience against trust-related attacks.

5.3.1. Vehicle level evaluation

At the vehicle level, the LTrustAssess algorithm
computes local trust scores in real time, based on
plausibility & consistency checks over BSM data. A
node is classified as malicious if its trust score falls
below a predefined threshold. To select an optimal
threshold, multiple candidates between 0.50 and 0.70
(step size 0.05) were evaluated, and the classification
performance was assessed using a confusion matrix.
For this purpose, the algorithm’s performance is
examined in two different situations: (i) without trust
feedback related attacks, such as goodMouthing,
BadMouthing. (ii): with 20% malicious trust feedback
in the whole network. The results are shown in the
following:

Table 4. LTrustAssess without Trust feedback attacks

Algorithm  Threshold ~ Accuracy  Precision  Recall F1-Score
LTrustAssess 0.65 0.9515 0.9552 0.9811 0.9679
InteractionLevel
LTrustAssess 0.65 0.9786 0.9767  0.9952 0.9859
NodeLevel

Table 5. LTrustAssess with 30% Trust feedback

attacks

Algorithm  Threshold  Accuracy  Precision  Recall F1-Score
LTrustAssess 0.65 0.7952 0.8984 0.8180 0.8564
InteractionLevel
L TrustAssess 0.65 0.8446 0.8778 0.9216 0.8992
NodeLevel

The results show that the local trust assessment
method achieves high accuracy in detecting data-level
attacks such as DoS, message modification, and data
replay, due to effective plausibility and consistency
checks. However, since LTrustAssess operates
instantaneously without considering temporal history
and changes in node behavior over time, it is less
effective against time-varying and trust-related attacks
such as ZigZag (On/Off) and good-mouthing and bad-
mouthing attacks, where malicious nodes alternate
between honest and dishonest behaviors. Therefore,
this detection needs to be performed at the RSU level
and globally.
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5.3.2. RSU level evaluation

At the RSU level, the proposed
Temporal GATwithLSTM model aggregates trust over
time and across multiple receivers. The model is
trained on the IoVDS dataset and evaluated on the test
set after applying the same preprocessing steps as in
the training phase. In examining global trust scores, we
will analyze both the trust scores between pairs (edge
trust scores) and the trust scores of each sending entity
(node trust scores). Edge trust scores are used to assess
the model's ability to detect Selective Misbehavior
Attacks, in which malicious nodes send only fake
messages to some nodes while behaving normally
toward others. Therefore, both the predicted edge trust
score and the predicted node trust score are examined
in the performance evaluation. The model-predicted
trust scores are then used to classify nodes as genuine
or malicious, with thresholds between 0.50 and 0.70.
As in the local evaluation, a threshold of 0.65 yielded
the best results. For this purpose, the model’s
performance is examined in two different situations: (i)
without trust feedback related attacks, such as
goodMouthing, BadMouthing. (ii): with 30%
malicious trust feedback in the whole network. The
results are shown in the following tables.

Table 6. DL. Model without Trust feedback attacks

Algorithm  Threshold ~ Accuracy  Precision Recall F1-Score

Deep 0.9658  0.9919 0.9786
Learning

Edge Level
Deep

Learning
Node Level

0.65 0.9683

0.65 0.9857  0.9814 = 1.0000 0.9906

Deep
Learning
Edge Level

Deep

Table 7. DL Model with 30% Trust feedback attacks

Algorithm  Threshold ~ Accuracy  Precision  Recall F1-Score

0.65 0.9187  0.9311  0.9600 0.9453

0.65 09732 0.9743 | 0.9905 0.9823

Learning

Node Level

These results shows that the deep learning model in
an effective manner detects malicious nodes at the end
of each state by leveraging both temporal trust
dynamics and graph-based structural dependencies.
The attention mechanism further enhances resilience
against ballot-stuffing (good-mouthing) and bad-
mouthing attacks, as RSUs assign higher weights to
consistent feedback from trusted nodes and down-
weight anomalous feedback. Furthermore, the model
shows strong resistance to ZigZag attacks: even when
malicious nodes intermittently behave honestly, their
cumulative trust score gradually decreases due to
temporal aggregation, enabling detection over time. In
addition, the calculated edge trust score between each
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pair allows the impact of the Selective Misbehavior
Attack to be minimized. The trust score between each
pair indicates the feedback from each node to other
nodes and enables the detection of whether a malicious
node has targeted only some nodes in the network.

5.4. Comparison

In this section, the proposed trust management
model is compared with existing approaches from two
different perspectives, aligned with the contributions
of this research. The first comparison focuses on
dataset generation, while the second addresses the
performance of malicious node detection models.

= Comparison of the [oVDS-generated dataset
with existing datasets,

=  Comparison of the proposed detection model
with baseline methods.

5.4.1. Comparison of the [oVDS Dataset

One of the contributions of this study is the
development of IoVDS, a dataset specifically designed
for trust management in Internet of Vehicles. To the
best of our knowledge, the closest effort toward
creating a trust-related dataset for vehicular networks
is the work of Wang et al. [16], who introduced the
TM-IoV dataset. In their work, the authors emphasized
that no public dataset for trust management in loV was
available, and thus their dataset represented an initial
contribution to this area. However, their dataset suffers
from several limitations that [oVDS addresses:

Temporal dimension: TM-IoV is a static dataset in
which trust parameters are only computed once at the
end of the simulation, making it unsuitable for
analyzing the temporal evolution of trust. In contrast,
[IoVDS captures trust-related parameters at multiple
time intervals, enabling time-series analysis of trust
dynamics.

Scope of features: TM-IoV is node-centric,
considering only entity-related parameters and
ignoring data-level trust factors. IoVDS is hybrid,
incorporating both entity-level features (e.g.,
familiarity, PDR, Similarity) and data-centric features
(e.g., avgBSMScore, RSSI).

Feature richness: IoVDS includes additional
contextual parameters such as number of exchanged
messages, duration of interactions, RSSI values, and
event-related factors, which enrich the dataset and
allow extraction of more meaningful dependencies.

Attack coverage: TM-IoV only considers the
ZigZag (On—Off) attack. IoVDS includes a wider
variety of trust-related attacks such as ZigZag, Bad-
Mouthing, and Good-Mouthing, which enhances the
dataset’s realism and robustness.
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Table 8. comparison of the proposed dataset with TM-IoV dataset

interactions)

(sequence of interactions)
Hybrid (entity- and data-focused)

Pair-based

dataset

Public

5.4.2. Comparison of Proposed DL Model

It is important to note that a direct one-to-one
comparison of trust management models is often not
feasible due to differences in trust metrics, simulation
environments, and datasets [26]. Nevertheless, to
evaluate the effectiveness of the proposed model, it
was compared with existing methods by implementing
prominent approaches from similar studies on the
generated dataset, using the trust parameters defined in
this research. In this process, common evaluation
metrics, including True Negative Rate, Accuracy,
Recall (True Positive Rate), Precision, and F1-Score,
have been utilized to evaluate the detection rate of
malicious nodes, enabling a comparative analysis and
clarifying the relative standing of the proposed model
compared to other methods. The following table
compares the proposed deep neural network-based
method with similar works by evaluating several
common performance metrics defined in those studies.
To this end, comparisons have been made with baseline
methods, such as Weighted Voting and the Random
Forest-based approach presented in [28].

Dynamic (trust-related parameter values for each trustor—
trustee pair at different time intervals during simulation)

BSMScores, SpeedSimilarity, HeadingSimilarity,
PositionSimilarity, Familiarity, ReceivedBSMCount, Reward/Punishment
Duration, PDR, EventFactor, RSSI, ReportTime,

SenderMbType, fTrust, CalculatedTrustScore

Interaction logs between 582 vehicles (over ~17,000 Interaction logs between 79 vehicles

(~9,700 interactions)

simulation)
Entity-focused

Pair-based

Veins framework in OMNeT++ and Ulm Scenario (areal-  Java-based loV simulator (no further
world scenario, highly relevant to vehicular networks) details provided)

ZigZag attack / Badmouthing attack / Ballot-stuffing attack ~ ZigZag attack
+ some data level attacks and misbehaviors

Temporal GAT with LSTM, trained on the generated No learning model introduced

Not Public

Table 9. comparison of approaches without malicious
attacks

Static (trust-related parameter values for
each trustor—trustee pair at the end of the

PDR, Similarity, Familiarity, Context,

90.33
91.93
98.67
99.27
98.06
99.04
97.55
98.36

Table 10. Comparison of approaches with 30%
malicious attacks

88.97
97.39
88.74
96.67
95.24
97.62
99.29
99.76

89.65
94.58
93.44
97.95
96.63
98.33
98.41
99.06

87.26
90.22
95.38
98.97
93.83
97.99
93.11
97.43

82.48
96.44
79.98
91.45
84.49
92.87

99.05

84.80
93.23
87.01
95.06
88.92
95.37
94.53
98.23
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Figure 8. Comparison of Edge Trust in different
approaches without and with 30 % malicious trust
attacks
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Figure 9. Comparison of Node Trust in different
approaches without and with 30 % malicious trust

attacks

As shown by the results, when the rate of good- and
bad-mouthing attacks in the network is low, the
proposed method remains superior to the compared
methods; however, the other methods also identify
malicious nodes with a high percentage. However, with
the increase in the rate of good-mouthing and bad-
mouthing attacks in the feedback of malicious nodes
regarding the trust score of other entities in the
network, our model remains capable of malicious node
detection with a high percentage, which indicates the
appropriate efficiency of the proposed model in
identifying malicious nodes in a high percentage of
trust-related attacks compared to other basic and
machine learning-based methods.

The primary advantage of the proposed approach
over the evaluated methods lies in its use of deep neural
networks to compute trust scores and its consideration
of dynamic behavioral and temporal patterns. By
analyzing the historical performance of nodes over
time and accounting for their interactions across the
entire network based on a graph-based representation,
this model enables a more comprehensive trust
evaluation for each node. This feature has led the
proposed model to achieve, according to comparative
results, a higher detection
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rate and better performance compared to the evaluated
models on the dataset generated from the simulation of
a real-world ULM scenario using the Veins framework
and the defined trust parameters. Consequently, it
emerges as an efficient approach for trust management
and the identification of malicious nodes in vehicular
networks.

5.5. Complexity Analysis and Execution Time of
the Proposed Method

When analyzing the computational complexity and
execution time of the proposed method, the following
points are noteworthy:

Global Trust Score Computation Window: In the
current model simulation, a 5000-second time window
is used to compute the global trust score. Given that the
simulation scenario is an Urban Local Mobility (ULM)
scenario, this duration is appropriate because, in less
than two hours of urban mobility, vehicles do not travel
far enough to pass through the communication range of
many RSUs. Consequently, even in the most extreme
case, the number of RSUs that must participate in
consensus over the trust score remains limited. This
allows the adoption of a lightweight, location-aware
consensus protocol for trust aggregation among RSUs.
Depending on the network type and density, this
duration may be adjusted (increased or decreased).

On-Vehicle Computation: Vehicle-to-vehicle
communication is performed using Basic Safety
Messages (BSMs), whose format is standardized and
readily processable at the vehicle level. Each vehicle
performs a simple trust computation every 30 seconds
to derive its local trust score. Since this calculation is
based on a weighted sum, the computational
complexity remains O(1). This indicates that the model
is well-suited to optimizing energy consumption in
vehicles within IoV environments [43][44].

Deep Learning Component at the RSU Layer:
The deep learning component for RSUs was
implemented and evaluated in Google Colab. The
following execution times were obtained:

Model training: Training the deep learning
model for 300 epochs took approximately 16 minutes.
Since the model is pre-trained and only needs to be
loaded during evaluation, training time does not pose
any operational concerns.

Model evaluation: The  end-to-end
evaluation pipeline—transforming the raw simulation
data into final trust outputs—took 45 seconds for data
corresponding to a 5000-second simulation interval.
This duration includes interaction pairing, sequence
construction, trust prediction using an LSTM layer,
graph-based representation of interactions, and
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computation of link- and node-level trust scores over a
5000-second history. After incorporating the time
required for RSU consensus via a lightweight
consensus protocol, the global trust score for all nodes
can be computed in under 2 minutes. Compared to the
5000-second interval between defined simulation
states, these results demonstrate that execution time is
well within acceptable limits.

Suitability for RSU Deployment: RSUs typically
have fixed locations, larger communication ranges, and
higher computational capacity than vehicles. Given the
small size and low computational overhead of the
proposed deep learning model, it can be easily
deployed at the RSU level without operational
constraints.

6. Discussion and Conclusion

In this research, we introduced a trust management
model for detecting malicious nodes in the Internet of
Vehicles. The proposed model adopts a two-layer
architecture operating at both the vehicle and RSU
levels and combines data-centric and node-centric
approaches to detect malicious behaviors at both the
data and node levels. This design enables a
decentralized and efficient trust management
mechanism for vehicular networks.

The proposed model was implemented through
simulation and evaluated using standard performance
metrics. The evaluation results, along with
comparisons with baseline methods, demonstrate that
the proposed approach effectively manages trust by
assigning dynamic trust scores to vehicles. Moreover,
it achieves higher detection rates for malicious nodes
and demonstrates greater resilience to trust-related
attacks than baseline models. The advantages of this
work can be summarized as follows:

e To address the lack of publicly available trust
datasets, we generated a dataset (IoVDS) through
the simulation of a real-world urban scenario,
which can serve as a foundation for future studies.
By leveraging graph-based feedback aggregation
and an attention mechanism, the model enables
dynamic weighting of feedback from neighboring
nodes, overcoming limitations in traditional trust
aggregation schemes.

The integration of LSTM enables the model to
incorporate temporal dynamics, aligning with the
principle that trust is developed over time.

To tackle the scalability challenge, the model relies
on a decentralized consensus mechanism among
RSUs, ensuring distributed trust management
across the network.
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These characteristics position the proposed framework
as a promising candidate for deployment in ITS,
enhancing both the security and performance of
vehicular networks.

6.1. Open Research Directions

While the proposed model shows strong
performance, several open research directions remain
for future investigation:

Weighted RSU feedback — The current model
weights node feedback dynamically; it could be
extended to weight RSU contributions based on their
historical reliability during the consensus process.

Consensus mechanism optimization: Future work
should investigate lightweight, scalable consensus
mechanisms for RSUs, potentially employing
localized or cluster-based consensus to reduce latency
and better adapt to vehicle mobility.

Blockchain integration — The final trust scores,
once agreed upon by RSUs, could be stored on a
blockchain, ensuring immutability, transparency, and
availability of trust information across all RSUs.

Data retention policies: Currently, only the most
recent global trust scores are retained for each state,
whereas previous interaction data is discarded.
Optimizing data storage and retention strategies could
improve long-term trust assessment.

Privacy Consideration Real-world vehicle
networks use different pseudo-IDs to maintain privacy
in various interactions, and their real ID is only
registered in the network. In the current study, vehicles
also use pseudo-IDs to exchange information among
themselves; however, these pseudo-IDs are defined as
fixed and immutable. Future research in this area can
address the modification of pseudo-IDs across
vehicles' interactions with other nodes to maintain
privacy.

Event Confidence evaluation — A promising
research direction is the application of calculated trust
scores to event message validation. When a vehicle
broadcasts an event (e.g., an accident or hazard
warning), the trust scores of both the sender and relay
nodes could be incorporated, along with factors such
as hop count and message redundancy, to assess event
credibility.

By addressing these challenges, future research can
further strengthen the robustness, scalability, and
applicability of trust management systems in IoV,
ultimately contributing to the development of secure,
reliable, and intelligent transportation networks.
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