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Abstract:
Article Info Biological age (BA) offers a more accurate measure of an individual's health status and aging rate
Received 17 November 2025 than chronological age. This study provides a systematic review and comparative analysis of deep
Accepted 01 January 2026 learning (DL) methodologies for BA estimation. We analyzed 33 selected studies, extracting data

into structured tables to compare data sources (brain MRI, X-rays, blood biomarkers, wearable
sensors), model architectures (CNNs, LSTMs, Ensembles, Multimodal), and performance
metrics (MAE, R%, AUROC). This framework enabled a transparent, side-by-side evaluation of
Keywords: the strengths and limitations of each approach. Our analysis confirms the superiority of advanced
DL architectures. CNNs demonstrated exceptional performance on imaging data, with a
lightweight SFCN model for brain MRI achieving a state-of-the-art Mean Absolute Error (MAE)
of 2.14 years. Models that combined multiple data types, such as imaging with clinical
Deep Learning; information, proved to be the most robust. For instance, one multimodal ensemble model
Neural Networks. achieved an AUROC of 0.89-0.91 for predicting mortality. However, significant challenges were
consistently identified, including limited model generalizability across diverse populations and
the critical issue of data heterogeneity. Deep learning holds considerable promise for accurate
biological age estimation, with complex, data-specific models such as CNNs and multimodal
ensembles delivering the highest performance. For successful translation into clinical practice,
future efforts must prioritize overcoming barriers related to model generalizability, data
standardization, and interpretability. Resolving these issues is essential for BA to realize its
potential in personalized preventive medicine and health risk assessment.
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1. Introduction researchers have long sought improved methods to measure
biological age (BA) to capture a person's functional health
more accurately. Deep learning (DL) has recently emerged
as a powerful tool for addressing this challenge, owing to its
ability to learn patterns from large, complex datasets [2—4].
For example, Cole et al. [3] used convolutional neural

Biological aging is complex and varies from person to
person—often differing significantly from simple calendar
age. This difference is important because it can more
accurately reveal an individual's true risk of age-related
diseases and decline than birth date alone [1]. Consequently,

© 2026 by the authors. Licensee FRAI, Babolsar, Mazandaran. This article is an open access article distributed under the terms and
T conditions of the Creative Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/deed.en)

ISSN 3092-7552


https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://foreign.umz.ac.ir/
mailto:elias_mazrooei@yahoo.com

Shahraki et al./ Future Research in AI & loT, 2026, 2(1)

networks (CNNs) directly on brain MRI scans to predict
"brain age" with high accuracy—and showed these
predictions can even be heritable. DL has also successfully
identified aging signals from other sources, such as
wearable activity trackers [4,6] and chest X-rays [8]. The
value of these BA predictors lies in their ability to capture
subtle structural and functional changes in the body, thereby
opening new avenues for personalized medicine and
preventive health strategies. Studies have employed a
diverse range of architectures tailored to specific data types.
For example, Rahman and Adjeroh [4] utilized a
combination of CNNs and Long Short-Term Memory
(LSTM) networks on physical activity data to estimate BA
with remarkable reliability. Furthermore, Kim et al. [9]
enhanced prediction accuracy by designing models that
integrate clinical risk scores. A significant advancement is
the multimodal approach, as evidenced by the work of
Bashyam et al. [2] and Kuo et al. [11], which has shown that
combining neuroimaging with cognitive or genetic data
yields more robust estimates of the aging process. These
findings underscore the superior capability of DL methods
to identify complex, non-linear patterns in health data—
patterns that often elude traditional statistical models.

However, the application of DL to BA estimation is not
without significant challenges. Limited availability of large,
annotated datasets, inherent demographic biases, and
inconsistencies in data acquisition protocols (e.g., across
different MRI scanners) can hinder the development of
models that perform reliably across diverse populations [14,
15, 17]. Moreover, the prevalent "black-box" nature of
many DL models raises important questions about the
interpretability of their predictions, driving researchers to
explore visualization techniques and explainable Al (XAI)
tools to elucidate the drivers of these models [16]. It is also
noteworthy that incorporating anatomical context has been
shown to improve the predictive accuracy of brain age
models [18]. Overcoming these barriers is essential for
building DL-based BA predictors that are not only accurate
but also fair, trustworthy, and ultimately useful in clinical
settings.

While previous reviews have surveyed aging biomarkers or
machine learning in healthcare broadly, few have provided
a focused, comparative analysis of deep-learning-specific
approaches for biological age estimation across multiple
data modalities. Existing syntheses often lack systematic
performance benchmarking or detailed architectural
comparisons. This gap is significant given the rapid
methodological evolution in DL. Our review addresses this
by offering a structured, transparent comparison of key
studies, extracting standardized metrics to identify which
data-architecture pairings yield optimal performance.
Furthermore, we synthesize not only quantitative outcomes
but also qualitative methodological insights, providing a
dual perspective essential for guiding future research.

Therefore, in this study, we systematically review 33 key
investigations that have applied deep learning techniques to
biological age estimation across diverse data modalities,
including brain MRI, facial images, chest X-rays, blood
biomarkers, and wearable sensor data. We conducted a

comprehensive literature search across major databases
(PubMed, Scopus, Web of Science, Google Scholar) for
studies published between 2013 and 2025. After applying
stringent eligibility criteria, data on their sources,
architectures (CNNs, LSTMs, ensembles, multimodal),
preprocessing steps, and performance metrics (MAE, R2,
AUROC) were extracted into standardized tables (Tables
S1-S5) to enable a transparent, side-by-side evaluation. By
comparing their methodologies, we aim to provide a clear
and structured overview of the field, identify critical
challenges—such as limited dataset diversity, inconsistent
preprocessing  pipelines, and insufficient —model
generalizability—and propose pathways toward more
standardized, interpretable, and clinically translatable
frameworks for future biological age estimation research.

2. Materials and Methods
2.1 Study Selection and Eligibility Criteria

We conducted a focused search of peer-reviewed papers on
the use of machine or deep learning for biological age
estimation. Hit up four big databases—PubMed, Scopus,
Web of Science, and Google Scholar—for stuff from 2013
to 2025. Introduced keyword combinations around aging
biology and computing, such as “biological age estimation,”
“brain age,” “deep learning,” “machine learning,” and
“neural networks.” The initial search returned 46 records.
After removing duplicates, 44 unique studies remained for
screening based on titles and abstracts. Studies were
excluded at this stage if they did not focus on biological age
estimation, used non-human data, or did not incorporate
machine learning or deep learning approaches. The
remaining articles underwent full-text review, during which
11 additional studies were excluded for insufficient
methodological details or the absence of reported
quantitative performance metrics.

For inclusion in the final analysis, studies had to satisfy the
following criteria:

(1) use of at least one machine learning or deep learning
method explicitly designed for biological age prediction;

(2) reliance on human biological or physiological data
sources, including medical imaging, blood biomarkers,
wearable sensor data, or cognitive assessments;

(3) reporting of at least one quantitative performance
metric, such as Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), coefficient of determination (R?), or
Area Under the Receiver Operating Characteristic Curve
(AUROC).

After applying these criteria, 33 studies were selected for
comparative analysis.

2.2 Systematic Data Extraction and Categorization
Framework

To ensure a transparent and reproducible comparison
across the 33 included studies, data were extracted using a
standardized template. Given the volume and heterogeneity
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of the information, detailed findings are provided in the
Supplementary Materials (Tables S1-S5), while the main
text presents synthesized results.

Extracted information was
complementary groups:

categorized into five

e Table S1 summarizes core study characteristics,
including data modality, sample size, and primary
modeling approach.

o Table S2 details input features, data acquisition methods,
and preprocessing steps used in each study.

e Table S3 compiles quantitative performance metrics
reported by the authors (e.g., MAE, RMSE, R?
AUROOC) to enable direct cross-study comparisons.

o Table S4 aggregates methodological strengths and
limitations as described by the original authors.

e Table S5 lists the main model architectures employed
and any notable design features.

This structured framework facilitated consistent evaluation
despite considerable methodological variation across
studies.

2.3 Analytical Strategy

The comparative analysis combined quantitative and
qualitative approaches. First, performance metrics from
Table S3 were analyzed to identify trends in predictive
accuracy across data modalities and model architectures.
Particular emphasis was placed on MAE variations across
dataset size, data type, and model complexity, providing an
objective basis for performance comparisons.

Second, a thematic analysis was performed on the
methodological insights summarized in Table S4. This
focused on recurring issues—such as  limited
generalizability, data heterogeneity, and interpretability
challenges—as well as frequently highlighted strengths.
Integrating quantitative performance data with qualitative
contextual findings allowed for a more comprehensive
understanding of current practices and limitations in deep
learning-based biological age estimation.

3. Result

The comparative analysis of the 33 selected studies revealed
distinct patterns in performance across data modalities and
model architectures. Key findings, detailed in the
Supplementary Tables (Tables S1-S5), demonstrate that
prediction accuracy is heavily influenced by both the type
of input data and the design of the learning framework.

3.1. Performance Across Data Modalities
3.1.1 Medical Imaging-Based Approaches

Models trained on medical imaging data consistently
outperformed other models in predictive accuracy. Brain
MRI-based methods, in particular, excelled due to their
capacity to extract rich structural details linked to

neurological aging. The top-performing model was reported
in Study 29, where a lightweight Simple Fully
Convolutional Network (SFCN) applied to T1-weighted
MRI scans achieved a Mean Absolute Error (MAE) of 2.14
years. Other CNN-based MRI studies also showed strong
results, including Study 2 (MAE = 3.3 years) and Study 3
(MAE = 4.16 years), confirming the effectiveness of
convolutional architectures for processing complex
neuroimaging data. Facial image models also performed
competitively. For instance, the VGG-16 model in Study 23
yielded an MAE of 2.6 years, and the multi-region CNN in
Study 26 reported an MAE of 3.48 years. In comparison,
Study 12 produced a higher MAE of 3.7 years, illustrating
how differences in architecture and preprocessing can affect
outcomes. Chest X-ray models delivered reliable moderate
accuracy. Studies 8 and 19 reported MAEs of 3.5 and 3.6
years, respectively, while Study 13 demonstrated robust
generalization with an R? of 0.81 in an external validation
dataset, highlighting the value of radiographic data for age
estimation across independent datasets.

3.1.2 Blood Biomarker-Based Models

Blood-based approaches offer practical benefits due to the
routine availability of laboratory results, but their accuracy
generally lags behind that of imaging methods, likely
reflecting the less direct link between peripheral markers
and overall aging. A notable exception was Study 31, which
used a two-stage, sex-stratified deep neural network on
complete blood count data. With a sample of 928
participants, it achieved a correlation of r = 0.9978 with
chronological age and an MAE under 1.5 years. However,
validation in larger cohorts is needed to establish broader
applicability.

3.1.3 Multimodal and Combined Data Approaches

Integrating multiple data types markedly improved both
robustness and performance. Study 21, for example,
combined structural and functional MRI with cognitive
scores in a stacked ensemble and attained an R? of
approximately 0.87, surpassing single-modality
benchmarks. Similarly, Study 34 (ENABL Age) applied an
explainable Gradient Boosted Trees model to extensive
clinical variables and reported AUROC values of 0.89-0.91
for mortality prediction, along with a correlation of r =
0.7867 in the UK Biobank dataset. These results emphasize
the advantage of multimodal strategies in addressing the
multifactorial character of biological aging.

3.1.4 Physical Activity and Sensor-Based Data

Wearable-derived data enable non-invasive, longitudinal
monitoring of behavioral and physiological signals. Study 4
employed a ConvLSTM model and recorded an MAE of 2.9
years, whereas Study 7 used a 3D CNN to achieve an MAE
of 3.1 years. Such outcomes indicate that temporal patterns
in activity data contain valuable aging signals suitable for
real-time applications.
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3.2 Performance by Model Architecture

Clear trends emerged across architectural families.
Convolutional Neural Networks (CNNs) have dominated
high-accuracy imaging tasks, including brain MRI (Studies
2, 3, 29), facial images (Studies 12, 23, 30), and chest X-
rays (Studies 8, 13, 19), owing to their ability to learn
hierarchical spatial features.

Ensemble and hybrid design further enhanced reliability.
The ensemble CNN in Study 11, for instance, reached an
MAE of 2.8 years for brain age prediction. Hybrid systems,
such as the 3D CNN + RNN in Study 17 and the stacked
SVR + RF in Study 21, also benefited from multi-source
integration. Interpretable models such as XGBoost and
Gradient-Boosted Trees trade minor accuracy for greater
interpretability. Studies 28 and 34 showed that techniques
such as SHAP analysis can reveal clinically meaningful
feature contributions, supporting their potential for medical
settings.

3.3 Relationship Between Dataset Size and Prediction
Error

A clear inverse association was observed between training
dataset size and prediction error across all modalities and
architectures. As depicted in Figure 1, larger sample sizes
were consistently associated with lower MAE values,
underscoring the critical role of extensive, high-quality data
in developing reliable biological age models.

of integrating diverse data for modeling the intricate biology
of aging.
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Figure 1. Mean Absolute Error (MAE) as a Function of
Dataset Size

3.4 Comparison of Single-Modal and Multimodal
Models

Multimodal approaches demonstrated a systematic
superiority over single-modality models. Figure 2 shows
that the combined frameworks achieved better overall
metrics, with the advantage becoming more pronounced
during rigorous testing. This pattern underscores the value

Figure 2. Performance Comparison of Single-modal and
Multimodal Approaches

4. Discussion

The results of this comparative review offer a
comprehensive overview of the application of deep learning
techniques to biological age estimation across a range of
data modalities. One of the most consistent patterns
observed across the 33 analyzed studies is the strong
influence of dataset size on predictive performance. As
shown in Figure 1, models trained on larger cohorts
generally achieved lower Mean Absolute Errors (MAE),
indicating that substantial data volume is critical for
capturing the intricate, non-linear patterns characteristic of
biological aging. This trend was especially pronounced in
high-performing MRI-based models, such as Study 29,
which reported an MAE of 2.14 years and leveraged large,
high-quality datasets. In addition to dataset scale, the use of
multiple data modalities emerged as another major driver of
improved robustness and accuracy. It is worth noting that
the applicability of deep learning extends well beyond
traditional brain aging studies. For instance, recent work on
dental image analysis has shown that hierarchical DL
frameworks can effectively capture subtle anatomical
patterns in panoramic radiographs. Hosseinpour et al.
(2025) employed a two-stage model based on pre-trained
CNNs such as DenseNetl21 and EfficientNet-B4 to
differentiate dental conditions with high accuracy [35].
Although not focused on aging per se, these studies
underscore the broader capacity of modern DL architectures
to extract clinically meaningful features from complex
medical images, thereby reinforcing their relevance for
biological age estimation tasks. As illustrated in Figure 2,
multimodal models consistently outperformed their single-
modality counterparts, with the performance advantage
becoming more evident in later validation phases. Studies
that integrated neuroimaging with cognitive assessments or
clinical biomarkers—such as Study 21 and Study 34—
demonstrated that biological aging is a multifaceted process
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that cannot be adequately captured by any single data source
alone. These observations align with the growing consensus
that multimodal architectures provide a more complete and
clinically relevant representation of aging mechanisms.
Despite these advances, considerable variability in
performance across studies underscores several persistent
methodological challenges. Data heterogeneity remains a
prominent concern, particularly in imaging-based research.
Variations in scanner hardware, acquisition protocols, and
preprocessing pipelines can significantly impact model
outcomes and complicate direct comparisons between
studies. This issue was apparent even among similarly
designed CNN-based brain MRI models (e.g., Studies 2, 3,
and 29), highlighting that advanced architecture alone is
insufficient to ensure generalizability. Furthermore,
incomplete reporting of demographic details and
preprocessing steps in some publications further hampers
reproducibility and interpretability. At the same time,
emerging computational approaches are enriching the
methodological landscape of aging research. Blends of
Graph Neural Networks and Transformers show promise for
capturing intricate brain network dynamics associated with
neurodegenerative conditions [36]. Additionally, nonlinear
analysis of EEG signals has proven effective for
characterizing dynamic physiological states via phase-space
representations and advanced feature-extraction methods
[37]. Together, these developments contribute to an
expanding toolkit for addressing the multidimensional
nature of biological aging.

Another key issue is the trade-off between predictive power
and model interpretability. Although sophisticated deep
learning models—particularly CNNs and ensemble
approaches—delivered state-of-the-art accuracy, they often
operate as black-box systems with limited explanatory
capacity. In contrast, more transparent methods, such as
gradient-boosted trees with SHAP explanations (e.g., Study
34), provided valuable insights into feature importance
while incurring modest performance reductions. Given the
potential clinical role of biological age estimates in risk
stratification and ecarly disease detection, enhanced
interpretability is essential for building trust and facilitating
broader adoption.

Practical deployment considerations should also not be
overlooked. As with challenges in connected healthcare
systems, models designed for continuous or population-
scale monitoring must address computational efficiency,
data privacy, and resource constraints. Lightweight
architectures and robust preprocessing workflows—similar
to hybrid segmentation and feature extraction techniques
previously developed for brain imaging—remain vital for
producing reliable inputs and reducing noise-related errors
[38, 39]. These factors emphasize that methodological rigor
must encompass the full pipeline, from data acquisition to
model deployment.

Overall, the integration of quantitative performance metrics
and qualitative methodological insights suggests that further
progress in biological age estimation will require
advancements beyond increasingly complex model
architectures. Greater emphasis on data standardization,

transparency, and rigorous validation is needed to translate
deep learning-based approaches from research settings into
clinically viable tools.

4.1 Limitations and Future

The present review has several limitations that warrant
consideration. First, substantial heterogeneity exists among
the included studies with respect to data modalities, cohort
sizes, preprocessing protocols, and evaluation metrics,
which limits the feasibility of direct quantitative meta-
analysis. Second, publication bias may influence the
observed performance trends, as studies reporting poorer
results are less likely to be published. Third, many of the
reviewed models were trained and validated on single-
cohort datasets, raising questions about their
generalizability to diverse populations and real-world
clinical settings.

Looking ahead, future efforts should focus on creating
large-scale, multi-center, and harmonized datasets to
minimize variability and strengthen external validity.
Greater investment in multimodal model development is
also recommended to capture the multidimensional nature
of biological aging more fully. Incorporating advanced
computational approaches, such as graph neural networks
for modeling brain connectivity [36] and nonlinear
dynamics for physiological signal analysis [37], could
further enhance model accuracy and biological plausibility.
Additionally, integrating explainable Al techniques into
high-performance deep learning frameworks should be
prioritized to improve clinical confidence and
interpretability. Finally, the adoption of standardized
benchmarking protocols and reporting guidelines would
greatly enhance transparency and enable more reliable
cross-study comparisons. Addressing practical deployment
challenges, such as computational efficiency and data
security, informed by lessons from connected health
systems [38], will be crucial for transitioning these tools
from research to sustainable clinical practice.

5.Conclusion

This comparative review underscores the substantial
potential of deep learning approaches to deliver accurate
and clinically relevant estimates of biological age. Among
the 33 studies evaluated, the strongest performance was
consistently observed in models trained on large datasets
and in models that incorporated multiple data modalities.
These findings suggest that both the scale and diversity of
data are crucial for effectively capturing the multifaceted
nature of the aging process. While single-modality
methods—such as CNN-based brain MRI models or blood
biomarker  analyses—produced impressive results,
multimodal frameworks reliably yielded more robust and
stable predictions.

However, the field continues to face constraints related to
dataset heterogeneity, inconsistencies in preprocessing
pipelines, and the absence of standardized evaluation and
reporting practices. These issues currently limit cross-study
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comparability and hinder the translation of models into
routine clinical use.

To advance the field, future research should prioritize the
development of larger, harmonized, multicenter datasets;
the  establishment of  transparent, reproducible
methodological standards; and the design of interpretable
multimodal architectures suitable for real-world clinical
deployment. Overcoming these barriers will be critical to
transforming biological age estimation into a reliable tool
for personalized preventive medicine and long-term health
risk assessment.
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