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 Abstract: 

Biological age (BA) offers a more accurate measure of an individual's health status and aging rate 

than chronological age. This study provides a systematic review and comparative analysis of deep 

learning (DL) methodologies for BA estimation. We analyzed 33 selected studies, extracting data 

into structured tables to compare data sources (brain MRI, X-rays, blood biomarkers, wearable 

sensors), model architectures (CNNs, LSTMs, Ensembles, Multimodal), and performance 

metrics (MAE, R², AUROC). This framework enabled a transparent, side-by-side evaluation of 

the strengths and limitations of each approach. Our analysis confirms the superiority of advanced 

DL architectures. CNNs demonstrated exceptional performance on imaging data, with a 

lightweight SFCN model for brain MRI achieving a state-of-the-art Mean Absolute Error (MAE) 

of 2.14 years. Models that combined multiple data types, such as imaging with clinical 

information, proved to be the most robust. For instance, one multimodal ensemble model 

achieved an AUROC of 0.89-0.91 for predicting mortality. However, significant challenges were 

consistently identified, including limited model generalizability across diverse populations and 

the critical issue of data heterogeneity. Deep learning holds considerable promise for accurate 

biological age estimation, with complex, data-specific models such as CNNs and multimodal 

ensembles delivering the highest performance. For successful translation into clinical practice, 

future efforts must prioritize overcoming barriers related to model generalizability, data 

standardization, and interpretability. Resolving these issues is essential for BA to realize its 

potential in personalized preventive medicine and health risk assessment. 
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1. Introduction 

Biological aging is complex and varies from person to 

person—often differing significantly from simple calendar 

age. This difference is important because it can more 

accurately reveal an individual's true risk of age-related 

diseases and decline than birth date alone [1]. Consequently, 

researchers have long sought improved methods to measure 

biological age (BA) to capture a person's functional health 

more accurately. Deep learning (DL) has recently emerged 

as a powerful tool for addressing this challenge, owing to its 

ability to learn patterns from large, complex datasets [2–4]. 

For example, Cole et al. [3] used convolutional neural 
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networks (CNNs) directly on brain MRI scans to predict 

"brain age" with high accuracy—and showed these 

predictions can even be heritable. DL has also successfully 

identified aging signals from other sources, such as 

wearable activity trackers [4,6] and chest X-rays [8]. The 

value of these BA predictors lies in their ability to capture 

subtle structural and functional changes in the body, thereby 

opening new avenues for personalized medicine and 

preventive health strategies. Studies have employed a 

diverse range of architectures tailored to specific data types. 

For example, Rahman and Adjeroh [4] utilized a 

combination of CNNs and Long Short-Term Memory 

(LSTM) networks on physical activity data to estimate BA 

with remarkable reliability. Furthermore, Kim et al. [9] 

enhanced prediction accuracy by designing models that 

integrate clinical risk scores. A significant advancement is 

the multimodal approach, as evidenced by the work of 

Bashyam et al. [2] and Kuo et al. [11], which has shown that 

combining neuroimaging with cognitive or genetic data 

yields more robust estimates of the aging process. These 

findings underscore the superior capability of DL methods 

to identify complex, non-linear patterns in health data—

patterns that often elude traditional statistical models. 

However, the application of DL to BA estimation is not 

without significant challenges. Limited availability of large, 

annotated datasets, inherent demographic biases, and 

inconsistencies in data acquisition protocols (e.g., across 

different MRI scanners) can hinder the development of 

models that perform reliably across diverse populations [14, 

15, 17]. Moreover, the prevalent "black-box" nature of 

many DL models raises important questions about the 

interpretability of their predictions, driving researchers to 

explore visualization techniques and explainable AI (XAI) 

tools to elucidate the drivers of these models [16]. It is also 

noteworthy that incorporating anatomical context has been 

shown to improve the predictive accuracy of brain age 

models [18]. Overcoming these barriers is essential for 

building DL-based BA predictors that are not only accurate 

but also fair, trustworthy, and ultimately useful in clinical 

settings. 

While previous reviews have surveyed aging biomarkers or 

machine learning in healthcare broadly, few have provided 

a focused, comparative analysis of deep-learning-specific 

approaches for biological age estimation across multiple 

data modalities. Existing syntheses often lack systematic 

performance benchmarking or detailed architectural 

comparisons. This gap is significant given the rapid 

methodological evolution in DL. Our review addresses this 

by offering a structured, transparent comparison of key 

studies, extracting standardized metrics to identify which 

data-architecture pairings yield optimal performance. 

Furthermore, we synthesize not only quantitative outcomes 

but also qualitative methodological insights, providing a 

dual perspective essential for guiding future research. 

Therefore, in this study, we systematically review 33 key 

investigations that have applied deep learning techniques to 

biological age estimation across diverse data modalities, 

including brain MRI, facial images, chest X-rays, blood 

biomarkers, and wearable sensor data. We conducted a 

comprehensive literature search across major databases 

(PubMed, Scopus, Web of Science, Google Scholar) for 

studies published between 2013 and 2025. After applying 

stringent eligibility criteria, data on their sources, 

architectures (CNNs, LSTMs, ensembles, multimodal), 

preprocessing steps, and performance metrics (MAE, R², 

AUROC) were extracted into standardized tables (Tables 

S1-S5) to enable a transparent, side-by-side evaluation. By 

comparing their methodologies, we aim to provide a clear 

and structured overview of the field, identify critical 

challenges—such as limited dataset diversity, inconsistent 

preprocessing pipelines, and insufficient model 

generalizability—and propose pathways toward more 

standardized, interpretable, and clinically translatable 

frameworks for future biological age estimation research. 

 

2. Materials and Methods 

2.1 Study Selection and Eligibility Criteria 

We conducted a focused search of peer-reviewed papers on 

the use of machine or deep learning for biological age 

estimation. Hit up four big databases—PubMed, Scopus, 

Web of Science, and Google Scholar—for stuff from 2013 

to 2025. Introduced keyword combinations around aging 

biology and computing, such as “biological age estimation,” 

“brain age,” “deep learning,” “machine learning,” and 

“neural networks.” The initial search returned 46 records. 

After removing duplicates, 44 unique studies remained for 

screening based on titles and abstracts. Studies were 

excluded at this stage if they did not focus on biological age 

estimation, used non-human data, or did not incorporate 

machine learning or deep learning approaches. The 

remaining articles underwent full-text review, during which 

11 additional studies were excluded for insufficient 

methodological details or the absence of reported 

quantitative performance metrics. 

For inclusion in the final analysis, studies had to satisfy the 

following criteria: 

(1) use of at least one machine learning or deep learning 

method explicitly designed for biological age prediction; 

(2) reliance on human biological or physiological data 

sources, including medical imaging, blood biomarkers, 

wearable sensor data, or cognitive assessments; 

(3) reporting of at least one quantitative performance 

metric, such as Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), coefficient of determination (R²), or 

Area Under the Receiver Operating Characteristic Curve 

(AUROC). 

After applying these criteria, 33 studies were selected for 

comparative analysis. 

 

2.2 Systematic Data Extraction and Categorization 

Framework 

To ensure a transparent and reproducible comparison 

across the 33 included studies, data were extracted using a 

standardized template. Given the volume and heterogeneity 
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of the information, detailed findings are provided in the 

Supplementary Materials (Tables S1–S5), while the main 

text presents synthesized results. 

Extracted information was categorized into five 

complementary groups: 

• Table S1 summarizes core study characteristics, 

including data modality, sample size, and primary 

modeling approach. 

• Table S2 details input features, data acquisition methods, 

and preprocessing steps used in each study. 

• Table S3 compiles quantitative performance metrics 

reported by the authors (e.g., MAE, RMSE, R², 

AUROC) to enable direct cross-study comparisons. 

• Table S4 aggregates methodological strengths and 

limitations as described by the original authors. 

• Table S5 lists the main model architectures employed 

and any notable design features. 

This structured framework facilitated consistent evaluation 

despite considerable methodological variation across 

studies. 

2.3 Analytical Strategy 

The comparative analysis combined quantitative and 

qualitative approaches. First, performance metrics from 

Table S3 were analyzed to identify trends in predictive 

accuracy across data modalities and model architectures. 

Particular emphasis was placed on MAE variations across 

dataset size, data type, and model complexity, providing an 

objective basis for performance comparisons. 

Second, a thematic analysis was performed on the 

methodological insights summarized in Table S4. This 

focused on recurring issues—such as limited 

generalizability, data heterogeneity, and interpretability 

challenges—as well as frequently highlighted strengths. 

Integrating quantitative performance data with qualitative 

contextual findings allowed for a more comprehensive 

understanding of current practices and limitations in deep 

learning-based biological age estimation. 

 

3. Result 

The comparative analysis of the 33 selected studies revealed 

distinct patterns in performance across data modalities and 

model architectures. Key findings, detailed in the 

Supplementary Tables (Tables S1–S5), demonstrate that 

prediction accuracy is heavily influenced by both the type 

of input data and the design of the learning framework. 

 

3.1. Performance Across Data Modalities 

3.1.1 Medical Imaging-Based Approaches 

Models trained on medical imaging data consistently 

outperformed other models in predictive accuracy. Brain 

MRI-based methods, in particular, excelled due to their 

capacity to extract rich structural details linked to 

neurological aging. The top-performing model was reported 

in Study 29, where a lightweight Simple Fully 

Convolutional Network (SFCN) applied to T1-weighted 

MRI scans achieved a Mean Absolute Error (MAE) of 2.14 

years. Other CNN-based MRI studies also showed strong 

results, including Study 2 (MAE = 3.3 years) and Study 3 

(MAE = 4.16 years), confirming the effectiveness of 

convolutional architectures for processing complex 

neuroimaging data. Facial image models also performed 

competitively. For instance, the VGG-16 model in Study 23 

yielded an MAE of 2.6 years, and the multi-region CNN in 

Study 26 reported an MAE of 3.48 years. In comparison, 

Study 12 produced a higher MAE of 3.7 years, illustrating 

how differences in architecture and preprocessing can affect 

outcomes. Chest X-ray models delivered reliable moderate 

accuracy. Studies 8 and 19 reported MAEs of 3.5 and 3.6 

years, respectively, while Study 13 demonstrated robust 

generalization with an R² of 0.81 in an external validation 

dataset, highlighting the value of radiographic data for age 

estimation across independent datasets. 

 

3.1.2 Blood Biomarker-Based Models 

Blood-based approaches offer practical benefits due to the 

routine availability of laboratory results, but their accuracy 

generally lags behind that of imaging methods, likely 

reflecting the less direct link between peripheral markers 

and overall aging. A notable exception was Study 31, which 

used a two-stage, sex-stratified deep neural network on 

complete blood count data. With a sample of 928 

participants, it achieved a correlation of r = 0.9978 with 

chronological age and an MAE under 1.5 years. However, 

validation in larger cohorts is needed to establish broader 

applicability. 

 

3.1.3 Multimodal and Combined Data Approaches 

Integrating multiple data types markedly improved both 

robustness and performance. Study 21, for example, 

combined structural and functional MRI with cognitive 

scores in a stacked ensemble and attained an R² of 

approximately 0.87, surpassing single-modality 

benchmarks. Similarly, Study 34 (ENABL Age) applied an 

explainable Gradient Boosted Trees model to extensive 

clinical variables and reported AUROC values of 0.89–0.91 

for mortality prediction, along with a correlation of r = 

0.7867 in the UK Biobank dataset. These results emphasize 

the advantage of multimodal strategies in addressing the 

multifactorial character of biological aging. 

 

3.1.4 Physical Activity and Sensor-Based Data 

Wearable-derived data enable non-invasive, longitudinal 

monitoring of behavioral and physiological signals. Study 4 

employed a ConvLSTM model and recorded an MAE of 2.9 

years, whereas Study 7 used a 3D CNN to achieve an MAE 

of 3.1 years. Such outcomes indicate that temporal patterns 

in activity data contain valuable aging signals suitable for 

real-time applications.   
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3.2 Performance by Model Architecture 

Clear trends emerged across architectural families. 

Convolutional Neural Networks (CNNs) have dominated 

high-accuracy imaging tasks, including brain MRI (Studies 

2, 3, 29), facial images (Studies 12, 23, 30), and chest X-

rays (Studies 8, 13, 19), owing to their ability to learn 

hierarchical spatial features. 

Ensemble and hybrid design further enhanced reliability. 

The ensemble CNN in Study 11, for instance, reached an 

MAE of 2.8 years for brain age prediction. Hybrid systems, 

such as the 3D CNN + RNN in Study 17 and the stacked 

SVR + RF in Study 21, also benefited from multi-source 

integration. Interpretable models such as XGBoost and 

Gradient-Boosted Trees trade minor accuracy for greater 

interpretability. Studies 28 and 34 showed that techniques 

such as SHAP analysis can reveal clinically meaningful 

feature contributions, supporting their potential for medical 

settings. 

 

3.3 Relationship Between Dataset Size and Prediction 

Error 

A clear inverse association was observed between training 

dataset size and prediction error across all modalities and 

architectures. As depicted in Figure 1, larger sample sizes 

were consistently associated with lower MAE values, 

underscoring the critical role of extensive, high-quality data 

in developing reliable biological age models. 

Figure 1. Mean Absolute Error (MAE) as a Function of 

Dataset Size 

 

3.4 Comparison of Single-Modal and Multimodal 

Models 

Multimodal approaches demonstrated a systematic 

superiority over single-modality models. Figure 2 shows 

that the combined frameworks achieved better overall 

metrics, with the advantage becoming more pronounced 

during rigorous testing. This pattern underscores the value 

of integrating diverse data for modeling the intricate biology 

of aging. 

 

Figure 2. Performance Comparison of Single-modal and 

Multimodal Approaches 

 

4. Discussion 

The results of this comparative review offer a 

comprehensive overview of the application of deep learning 

techniques to biological age estimation across a range of 

data modalities. One of the most consistent patterns 

observed across the 33 analyzed studies is the strong 

influence of dataset size on predictive performance. As 

shown in Figure 1, models trained on larger cohorts 

generally achieved lower Mean Absolute Errors (MAE), 

indicating that substantial data volume is critical for 

capturing the intricate, non-linear patterns characteristic of 

biological aging. This trend was especially pronounced in 

high-performing MRI-based models, such as Study 29, 

which reported an MAE of 2.14 years and leveraged large, 

high-quality datasets. In addition to dataset scale, the use of 

multiple data modalities emerged as another major driver of 

improved robustness and accuracy. It is worth noting that 

the applicability of deep learning extends well beyond 

traditional brain aging studies. For instance, recent work on 

dental image analysis has shown that hierarchical DL 

frameworks can effectively capture subtle anatomical 

patterns in panoramic radiographs. Hosseinpour et al. 

(2025) employed a two-stage model based on pre-trained 

CNNs such as DenseNet121 and EfficientNet-B4 to 

differentiate dental conditions with high accuracy [35]. 

Although not focused on aging per se, these studies 

underscore the broader capacity of modern DL architectures 

to extract clinically meaningful features from complex 

medical images, thereby reinforcing their relevance for 

biological age estimation tasks. As illustrated in Figure 2, 

multimodal models consistently outperformed their single-

modality counterparts, with the performance advantage 

becoming more evident in later validation phases. Studies 

that integrated neuroimaging with cognitive assessments or 

clinical biomarkers—such as Study 21 and Study 34—

demonstrated that biological aging is a multifaceted process 
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that cannot be adequately captured by any single data source 

alone. These observations align with the growing consensus 

that multimodal architectures provide a more complete and 

clinically relevant representation of aging mechanisms. 

Despite these advances, considerable variability in 

performance across studies underscores several persistent 

methodological challenges. Data heterogeneity remains a 

prominent concern, particularly in imaging-based research. 

Variations in scanner hardware, acquisition protocols, and 

preprocessing pipelines can significantly impact model 

outcomes and complicate direct comparisons between 

studies. This issue was apparent even among similarly 

designed CNN-based brain MRI models (e.g., Studies 2, 3, 

and 29), highlighting that advanced architecture alone is 

insufficient to ensure generalizability. Furthermore, 

incomplete reporting of demographic details and 

preprocessing steps in some publications further hampers 

reproducibility and interpretability. At the same time, 

emerging computational approaches are enriching the 

methodological landscape of aging research. Blends of 

Graph Neural Networks and Transformers show promise for 

capturing intricate brain network dynamics associated with 

neurodegenerative conditions [36]. Additionally, nonlinear 

analysis of EEG signals has proven effective for 

characterizing dynamic physiological states via phase-space 

representations and advanced feature-extraction methods 

[37]. Together, these developments contribute to an 

expanding toolkit for addressing the multidimensional 

nature of biological aging. 

Another key issue is the trade-off between predictive power 

and model interpretability. Although sophisticated deep 

learning models—particularly CNNs and ensemble 

approaches—delivered state-of-the-art accuracy, they often 

operate as black-box systems with limited explanatory 

capacity. In contrast, more transparent methods, such as 

gradient-boosted trees with SHAP explanations (e.g., Study 

34), provided valuable insights into feature importance 

while incurring modest performance reductions. Given the 

potential clinical role of biological age estimates in risk 

stratification and early disease detection, enhanced 

interpretability is essential for building trust and facilitating 

broader adoption. 

Practical deployment considerations should also not be 

overlooked. As with challenges in connected healthcare 

systems, models designed for continuous or population-

scale monitoring must address computational efficiency, 

data privacy, and resource constraints. Lightweight 

architectures and robust preprocessing workflows—similar 

to hybrid segmentation and feature extraction techniques 

previously developed for brain imaging—remain vital for 

producing reliable inputs and reducing noise-related errors 

[38, 39]. These factors emphasize that methodological rigor 

must encompass the full pipeline, from data acquisition to 

model deployment. 

Overall, the integration of quantitative performance metrics 

and qualitative methodological insights suggests that further 

progress in biological age estimation will require 

advancements beyond increasingly complex model 

architectures. Greater emphasis on data standardization, 

transparency, and rigorous validation is needed to translate 

deep learning-based approaches from research settings into 

clinically viable tools. 

4.1 Limitations and Future  

The present review has several limitations that warrant 

consideration. First, substantial heterogeneity exists among 

the included studies with respect to data modalities, cohort 

sizes, preprocessing protocols, and evaluation metrics, 

which limits the feasibility of direct quantitative meta-

analysis. Second, publication bias may influence the 

observed performance trends, as studies reporting poorer 

results are less likely to be published. Third, many of the 

reviewed models were trained and validated on single-

cohort datasets, raising questions about their 

generalizability to diverse populations and real-world 

clinical settings. 

Looking ahead, future efforts should focus on creating 

large-scale, multi-center, and harmonized datasets to 

minimize variability and strengthen external validity. 

Greater investment in multimodal model development is 

also recommended to capture the multidimensional nature 

of biological aging more fully. Incorporating advanced 

computational approaches, such as graph neural networks 

for modeling brain connectivity [36] and nonlinear 

dynamics for physiological signal analysis [37], could 

further enhance model accuracy and biological plausibility. 

Additionally, integrating explainable AI techniques into 

high-performance deep learning frameworks should be 

prioritized to improve clinical confidence and 

interpretability. Finally, the adoption of standardized 

benchmarking protocols and reporting guidelines would 

greatly enhance transparency and enable more reliable 

cross-study comparisons. Addressing practical deployment 

challenges, such as computational efficiency and data 

security, informed by lessons from connected health 

systems [38], will be crucial for transitioning these tools 

from research to sustainable clinical practice. 

 

5.Conclusion  

This comparative review underscores the substantial 

potential of deep learning approaches to deliver accurate 

and clinically relevant estimates of biological age. Among 

the 33 studies evaluated, the strongest performance was 

consistently observed in models trained on large datasets 

and in models that incorporated multiple data modalities. 

These findings suggest that both the scale and diversity of 

data are crucial for effectively capturing the multifaceted 

nature of the aging process. While single-modality 

methods—such as CNN-based brain MRI models or blood 

biomarker analyses—produced impressive results, 

multimodal frameworks reliably yielded more robust and 

stable predictions. 

However, the field continues to face constraints related to 

dataset heterogeneity, inconsistencies in preprocessing 

pipelines, and the absence of standardized evaluation and 

reporting practices. These issues currently limit cross-study 
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comparability and hinder the translation of models into 

routine clinical use. 

To advance the field, future research should prioritize the 

development of larger, harmonized, multicenter datasets; 

the establishment of transparent, reproducible 

methodological standards; and the design of interpretable 

multimodal architectures suitable for real-world clinical 

deployment. Overcoming these barriers will be critical to 

transforming biological age estimation into a reliable tool 

for personalized preventive medicine and long-term health 

risk assessment. 

 

6.Acknowledgements 

The authors would like to thank all researchers whose 

publicly available datasets and prior studies enabled this 

comparative review. In addition, the authors acknowledge 

the use of AI-assisted tools (e.g., ChatGPT) exclusively for 

language editing and clarity improvement during 

manuscript preparation. 

 

7.References 

[1] Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T. E., Ellingsen, 

L. M., Walters, G. B., Gudbjartsson, D. F., ... & Ulfarsson, M. O. 

(2019). Brain age prediction using deep learning uncovers 

associated sequence variants. Nature Communications, *10*(1), 

5409. DOI:10.1038/s41467-019-13163-9 

[2] Dartora, C., Marseglia, A., Mårtensson, G., Muehlboeck, J. S., 

Kern, S., Zettergren, A., ... & Westman, E. (2023). Predicting 

biological brain age using deep learning methods. Alzheimer's & 

Dementia, *19*, e067092. DOI:10.1002/alz.067092 

[3] Mazrooei, R. E., Azarnoosh, M., Ghoshuni, M., & Khalilzadeh, 

M. M. (2022). Comparison of the Function of the Elman Neural 

Network and the Deep Neural Network for the Diagnosis of Mild 

Alzheimer’s Disease. Shefaye Khatam, *10*(1), 1-15. 

DOI:10.52547/shefa.10.1.1 

[4] Rahman, S. A., & Adjeroh, D. A. (2019). Deep learning using 

convolutional LSTM estimates biological age from physical 

activity. Scientific Reports, *9*(1), 11425. DOI:10.1038/s41598-

019-46850-0 

[5] Moon, S. E., Yoon, J. W., Joo, S., Kim, Y., Bae, J. H., Yoon, S., 

... & Cho, Y. M. (2023). Development of deep biological ages 

aware of morbidity and mortality based on unsupervised and semi-

supervised deep learning approaches. arXiv preprint 

arXiv:2302.00319. DOI:10.48550/arXiv.2302.00319 

[6] Moon, S. E., Yoon, J. W., Joo, S., Kim, Y., Bae, J. H., Yoon, S., 

... & Cho, Y. M. (2023). Development of deep biological ages 

aware of morbidity and mortality based on unsupervised and semi-

supervised deep learning approaches. arXiv preprint 

arXiv:2302.00319. DOI:10.48550/arXiv.2302.00319 

[7] Rahman, S. A., & Adjeroh, D. A. (2019, November). 

Estimating biological age from physical activity using deep 

learning with 3D CNN. In 2019 IEEE International Conference on 

Bioinformatics and Biomedicine (BIBM) (pp. 1100-1103). IEEE. 

DOI:10.1109/BIBM47256.2019.8983251 

[8] Ieki, H., Ito, K., Saji, M., Kawakami, R., Nagatomo, Y., Takada, 

K., ... & Komuro, I. (2022). Deep learning-based age estimation 

from chest X-rays indicates cardiovascular prognosis. 

Communications Medicine, *2*(1), 159. DOI:10.1038/s43856-

022-00220-6 

[9] Kim, S., Kim, H., Lee, E. S., Lim, C., & Lee, J. (2022). Risk 

score-embedded deep learning for biological age estimation: 

Development and validation. Information Sciences, *586*, 628-

643. DOI:10.1016/j.ins.2021.12.015 

[10] Chen, S., Gao, Q., Cao, L., Wang, J., & Wang, T. (2023). 

Application of deep neural network and Klemera-Doubal method 

in estimating biological age of middle-aged and elderly residents 

in China. Chinese Public Health, *39*(6), 782-788. 

DOI:10.11847/zgggws1140385 

[11] Kuo, C. Y., Tai, T. M., Lee, P. L., Tseng, C. W., Chen, C. Y., 

Chen, L. K., ... & Lin, C. P. (2021). Improving individual brain age 

prediction using an ensemble deep learning framework. Frontiers 

in Psychiatry, *12*, 626677. DOI:10.3389/fpsyt.2021.626677 

[12] Mazrooei Rad, E., Pazhoumand Rad, H., & Salmani 

Bajestani, S. (2023). Separation of Healthy Individuals and 

Patients with Alzheimer’s Disease Using the Effective 

Communication of Brain Signals. Neuroscience Journal of 

Shefaye Khatam, *11*(1), 1-12. DOI:10.52547/shefa.11.1.1 

[13] Lee, J. H., Lee, D., Lu, M. T., Raghu, V. K., Goo, J. M., Choi, 

Y., ... & Kim, H. (2024). External testing of a deep learning model 

to estimate biologic age using chest radiographs. Radiology: 

Artificial Intelligence, *6*(5), e230433. DOI:10.1148/ryai.230433 

[14] Antipov, G., Baccouche, M., Berrani, S. A., & Dugelay, J. L. 

(2016). Apparent age estimation from face images combining 

general and children-specialized deep learning models. In 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition Workshops (pp. 96-104). 

DOI:10.1109/CVPRW.2016.105 

[15] Aycheh, H. M., Seong, J. K., Shin, J. H., Na, D. L., Kang, B., 

Seo, S. W., & Sohn, K. A. (2018). Biological brain age prediction 

using cortical thickness data: a large scale cohort study. Frontiers 

in Aging Neuroscience, *10*, 252. 

DOI:10.3389/fnagi.2018.00252 

[16] Le Goallec, A., Collin, S., Diai, S., Prost, J. B., Jabri, M. H., 

Vincent, T., & Patel, C. J. (2021). Analyzing the 

multidimensionality of biological aging with the tools of deep 

learning across diverse image-based and physiological indicators 

yields robust age predictors. medRxiv. 

DOI:10.1101/2021.04.25.21255767 

[17] Goallec, A. L., Diai, S., Collin, S., Vincent, T., & Patel, C. J. 

(2021). Using deep learning to predict brain age from brain 

magnetic resonance images and cognitive tests reveals that 

anatomical and functional brain aging are phenotypically and 

genetically distinct. medRxiv. DOI:10.1101/2021.06.22.21259280 

[18] Wu, Y., Gao, H., Zhang, C., Ma, X., Zhu, X., Wu, S., & Lin, 

L. (2024). Machine learning and deep learning approaches in 

lifespan brain age prediction: A comprehensive review. 

Tomography, *10*(8), 1238-1262. 

DOI:10.3390/tomography10080093 



Shahraki et al./ Future Research in AI & IoT, 2026, 2(1) 

7 
 

[19] Raghu, V. K., Weiss, J., Hoffmann, U., Aerts, H. J., & Lu, M. 

T. (2021). Deep learning to estimate biological age from chest 

radiographs. JACC: Cardiovascular Imaging, *14*(11), 2226-

2236. DOI:10.1016/j.jcmg.2021.01.008 

 

[20] Bermudez, C., Plassard, A. J., Chaganti, S., Huo, Y., Aboud, 

K. S., Cutting, L. E., ... & Landman, B. A. (2019). Anatomical 

context improves deep learning on the brain age estimation task. 

Magnetic Resonance Imaging, *62*, 70-77. 

DOI:10.1016/j.mri.2019.06.018 

[21] Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. 

K., Huntenburg, J. M., ... & Margulies, D. S. (2017). Predicting 

brain-age from multimodal imaging data captures cognitive 

impairment. NeuroImage, *148*, 179-188. 

DOI:10.1016/j.neuroimage.2016.11.005 

[22] Pyrkov, T. V., Slipensky, K., Barg, M., Kondrashin, A., 

Zhurov, B., Zenin, A., ... & Fedichev, P. O. (2018). Extracting 

biological age from biomedical data via deep learning: too much 

of a good thing?. Scientific Reports, *8*(1), 5210. 

DOI:10.1038/s41598-018-23534-9 

[23] Jang, J., Jeon, S. H., Kim, J., & Yoon, H. (2017). Robust deep 

age estimation method using artificially generated image set. ETRI 

Journal, *39*(5), 643-651. DOI:10.4218/etrij.17.0117.0078 

[24] Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., 

Moskalev, A., Kolosov, A., ... & Zhavoronkov, A. (2016). Deep 

biomarkers of human aging: application of deep neural networks 

to biomarker development. Aging (Albany NY), *8*(5), 1021. 

DOI:10.18632/aging.100968 

[25] Dong, Y., Liu, Y., & Lian, S. (2016). Automatic age estimation 

based on deep learning algorithm. Neurocomputing, *187*, 4-10. 

DOI:10.1016/j.neucom.2015.09.115 

[26] Liu, T., Wan, J., Yu, T., Lei, Z., & Li, S. Z. (2016, September). 

Age estimation based on multi-region convolutional neural 

network. In Chinese Conference on Biometric Recognition (pp. 

186-194). Springer International Publishing. DOI:10.1007/978-3-

319-46654-5_21 

[27] Gialluisi, A., Di Castelnuovo, A., Donati, M. B., De Gaetano, 

G., Iacoviello, L., & Moli-sani Study Investigators. (2019). 

Machine learning approaches for the estimation of biological 

aging: the road ahead for population studies. Frontiers in 

Medicine, *6*, 146. DOI:10.3389/fmed.2019.00146 

[28] Wood, T. R., Kelly, C., Roberts, M., & Walsh, B. (2019). An 

interpretable machine learning model of biological age. 

F1000Research, *8*, 17. DOI:10.12688/f1000research.17555.1 

[29] Mazrooei, E., Azarnoosh, M., Ghoshuni, M., & Khalilzadeh, 

M. M. (2022). Early detection of Alzheimer’s disease with 

nonlinear features of EEG signal and MRI images by 

convolutional neural network. International Clinical Neuroscience 

Journal, *9*, e20. DOI:10.34172/icnj.2022.20 

[30] Al Jibory, F. K., Mohammed, O. A., & Al Tamimi, M. S. H. 

(2022). Age estimation utilizing deep learning Convolutional 

Neural Network. International Journal on Technical and Physical 

Problems of Engineering, *14*(4), 219-224. 

[31] Slipchenko, V. H., Poliahushko, L. H., Shatylo, V. V., & 

Rudyk, V. I. (2023). Machine learning for human biological age 

estimation based on clinical blood analysis. Applied Aspects of 

Information Technology, *4*(6), 431-442. 

DOI:10.15276/aait.06.2023.29 

 

[32] Li, R., Chen, W., Li, M., Wang, R., Zhao, L., Lin, Y., ... & Lin, 

H. (2023). LensAge index as a deep learning-based biological age 

for self-monitoring the risks of age-related diseases and mortality. 

Nature Communications, *14*(1), 7126. DOI:10.1038/s41467-

023-42934-8 

[33] Ni, X., Zhao, H., Li, R., Su, H., Jiao, J., Yang, Z., ... & Yuan, 

H. (2023). Development of a model for the prediction of biological 

age. Computer Methods and Programs in Biomedicine, *240*, 

107686. DOI:10.1016/j.cmpb.2023.107686 

[34] Qiu, W., Chen, H., Kaeberlein, M., & Lee, S. I. (2023). 

ExplaiNAble BioLogical Age (ENABL Age): an artificial 

intelligence framework for interpretable biological age. The 

Lancet Healthy Longevity, *4*(12), e711-e723. 

DOI:10.1016/S2666-7568(23)00189-7 

[35] Hosseinpour, H., Ghasemi, J., & Abesi, F. (2025). Analysis of 

Panoramic Dental Images for Dental Symptom Differentiation 

Based on Deep Learning. Future Research on AI and IoT, *1*(1), 

1-9. DOI:10.22080/frai.2025.29272.1013 

[36] Zendehbad, S. A., & Salmani Bajestani, S. (2024). From 

Cognitive Systems to Alzheimer's Disease: The Role of 

Computational Modeling. Neuroscience Journal of Shefaye 

Khatam, *13*(1), 63-72. DOI:10.61186/shefa.13.1.63 

[37] Lashkari, S., Khalilzadeh, M., Zendehbad, A., Hashemi 

Gogpayegani, M. R., & Gorji, A. (2025). Nonlinear Features-

Based Evaluation of EEG Signal for Epileptic Seizures Detection 

in Human Temporal Lobe Epilepsy. Future Research on AI and 

IoT, *1*(1), 28-36. DOI:10.22080/frai.2025.29345.1019 

[38] Esmaeili, S., Tabbakh, S. R. K., & Shakeri, H. (2020). A 

priority-aware lightweight secure sensing model for body area 

networks with clinical healthcare applications in Internet of 

Things. Pervasive and Mobile Computing, *69*, 101265. 

DOI:10.1016/j.pmcj.2020.101265 

[39] Rostami, M. T., Ghaderi, R., & Ghasemi, J. (2013, August). 

Neural network for enhancement of FCM based brain MRI 

segmentation. In 2013 13th Iranian Conference on Fuzzy Systems 

(IFSC) (pp. 1-4). IEEE. DOI:10.1109/IFSC.2013.6675661 

 

 

 

 

 

 

 

 

 



Shahraki et al./ Future Research in AI & IoT, 2026, 2(1) 

8 
 

 

 

 

 

 

 

 

 

 

 

 


