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 Abstract: 

In recent years, routing in wireless sensor networks (WSNs) has emerged as a key research 

challenge due to the dynamic characteristics and constrained resources of these networks. 

Opportunistic Routing (OR) has emerged as an effective model that leverages the broadcast 

capabilities of wireless communication to improve network efficiency. The fundamental concept 

of OR is to select a suitable candidate subset at each node: upon receiving a packet, only the best 

candidate forwards it, while the others discard it, thereby enhancing reliability and minimizing 

redundancy. This paper aims to identify the optimal candidate set in opportunistic routing. This 

document proposes a new hybrid routing method, FRLOR (Fuzzy Reinforcement Learning-based 

Opportunistic Routing), that integrates Fuzzy Logic (FL) and Reinforcement Learning (RL) to 

enable smart, dynamic, and adaptive candidate selection in opportunistic routing. The fuzzy 

inference system assesses three fundamental input factors—geographical distance, neighbor node 

density, and link probability—to identify an initial candidate set. The RL element subsequently 

enhances this collection by continuously learning from network feedback and optimizing policies 

to select the most effective forwarding nodes. The effectiveness of the proposed FRLOR 

technique was assessed and compared with current algorithms, such as EEFLPOR, POR, and 

DPOR, using the Expected Number of Transmissions (ENT), Execution Time, End-to-End Delay 

(E2E Delay), Packet Delivery Ratio (PDR), and Energy Consumption. Simulation results indicate 

that integrating fuzzy reasoning with reinforcement learning substantially improves routing 

efficiency and network performance compared with conventional approaches. 
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1. Introduction 

Wireless networks have become central to everyday life in 

the modern era. One important feature of these networks is 

their broadcast nature. When a node transmits a packet, 

neighboring nodes can detect and receive that transmission. 

Routing is a key challenge in wireless networks. In 

conventional methods and schemes, a route is first 

determined and then used to forward packets [1, 2]. 

However, conventional routing protocols fail to account for 

the natural broadcasting capability of wireless 

environments. To enhance network performance and better 

utilize their broadcast characteristics, Opportunistic 

Routing (OR) was introduced [3, 4]. OR leverages the 

benefits of the wireless environment to improve the 

performance. Unlike traditional routing, OR sends a packet 

to a group of nodes instead of one specific recipient. The 

results in [1] show that OR outperforms other traditional 

algorithms. To design OR, three parameters are considered: 

how to select forwarders, how to compute a routing metric 

for prioritization, and how to coordinate among those 

forwarders. Among these, forwarder selection is a principal 

https://creativecommons.org/licenses/by/4.0/deed.en
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challenge. Each node in the network executes a decision 

algorithm and then, based on its output, chooses its 

candidates. The objective of this selection process is to 

minimize the total transmissions required for successful 

packet delivery. Metric calculation, which is necessary to 

select and prioritize the candidate set, requires a measure or 

standard [5, 6]. Generally, metrics are divided into two 

categories: local and end-to-end approaches [7]. A local 

metric considers only the local information of neighboring 

nodes to send packets. In fact, the choice of the next node is 

determined by factors such as link probabilities and node 

geographic information. In an end-to-end metric, all node 

information and status are considered to determine the 

optimal path. Although this method may select the optimal 

route, it significantly increases computational cost. The next 

parameter in OR is candidate coordination, a mechanism for 

detecting the best and highest-priority node. Subsequently, 

other nodes in the candidate set discard the packet. Several 

coordination methods have been proposed among 

candidates, including timer-based, acknowledgment-based, 

RTS/CTS, and network coding [8, 9]. One common 

candidate coordination method is timer-based. In this 

method, each node waits for a preset time; if the node with 

the highest ranking fails to transmit the packet, the 

subsequent node sends it. In most existing work on OR, 

nodes are fixed and do not move within the network. The 

aim of opportunistic routing is to reduce the expected 

number of transmissions from source to destination, and this 

goal can be achieved only by selecting a suitable candidate 

set [10, 11]. Given the uncertainty and dynamism of 

wireless networks, intelligent mechanisms are needed to 

support effective candidate selection. Fuzzy logic is very 

useful for modelling uncertainty and imprecision in 

complex systems and provides robust decision-making 

capabilities in environments with ambiguous or incomplete 

information [12, 13]. 

This paper presents a novel forwarder selection method 

utilizing Fuzzy Reinforcement Learning in Opportunistic 

Routing (FRLOR). The fuzzy system inputs comprise 

geographical distance, link probability, and the number of 

neighbors for each candidate node. Reinforcement learning 

optimizes the candidate selection strategy based on network 

feedback. The paper is organized as follows: in Section 2, 

we review prior work; in Section 3, we describe the 

proposed algorithm, FRLOR. The proposed algorithm is 

compared with other candidate selection algorithms in 

Section 4, and Section 5 concludes. 

 

2. Related Work  

A core problem in Opportunistic Routing is determining 

the set of forwarders [1, 14]. One of the popular candidate 

selection algorithms is Extremely Opportunistic Routing 

(EXOR) [4]. EXOR applies the ETX metric to select and 

prioritize candidates. However, ETX is one of the simplest 

metrics and is not highly accurate. In [15], Opportunistic 

Any-Path Forwarding introduced a new metric, Expected 

Any-Path Transmission (EAX), which was more accurate 

than ETX. In [16], a greedy approach that leverages 

neighborhood information is employed to enhance network 

performance. This paper introduces a method to reduce 

beacon size by transmitting a subset of k neighboring data 

points within an LDACS time interval. The results 

demonstrate improved performance.  

In [17], a reusable RL-based routing algorithm for SDN 

has been presented. The authors propose RLSR-Routing, 

which modifies SARSA and uses Segment Routing to 

aggregate actions and apply dual rewards. It demonstrates 

improved load balancing and faster convergence than 

traditional methods. In [18], an RL-enhanced Epidemic 

Routing protocol for OppNets has been introduced. The 

method integrates Q-learning and PPO to intelligently select 

forwarding neighbors, significantly reducing overhead and 

latency while maintaining high delivery rates in resource-

constrained environments. In [19], an Energy-Efficient 

Mixture Opportunistic Routing (EMOR) for lunar surface 

networks has been proposed. Using an Actor-Critic 

architecture and a hybrid table-timer mechanism, it 

optimizes delay and energy consumption, greatly extending 

network lifetime and improving delivery ratio. 

In [20], an Opportunistic Routing using Q-learning with 

Context Information (ORQLCI) has been presented. By 

integrating node meeting probability and buffer state into 

the Q-learning update mechanism, it achieves higher 

delivery rates and lower overhead than existing protocols 

such as Epidemic and Prophet.  The authors of [21] present 

a two-layer model for opportunistic networks that integrates 

cybersecurity and blockchain concepts. The first layer 

introduces a fuzzy logic-based trust protocol (FT-OLSR) to 

isolate malicious nodes, while the second layer proposes a 

novel routing mechanism. Simulation results demonstrate 

that this approach achieves a higher delivery probability, a 

lower overhead ratio, and lower latency than established 

routing algorithms. The authors in [22] have presented 

SROR, a secure and reliable opportunistic routing protocol 

for Vehicular Ad Hoc Networks (VANETs). The method 

employs a deep reinforcement learning framework to select 

forwarding nodes based on parameters such as relative 

speed. It aims to improve packet delivery ratio and reduce 

delay while defending against blackhole and gray attacks. 

Results show that SROR outperforms existing protocols, 

achieving a higher delivery probability and lower latency. 

In [14], researchers introduced OptiE2ERL, a model that 

uses reinforcement learning to enhance energy efficiency in 

the Internet of Vehicles (IoV).  

In [23], the authors proposed a new metric, TLG, based on 

link quality, geographic location, and remaining energy. In 

this algorithm, nodes with the best link quality, the shortest 

distance, and suitable energy efficiency are added to the 

candidate set. In [24], Position-based Opportunistic Routing 

(POR) is proposed for MANETs. It leverages geographic 

information and the broadcast nature of wireless channels to 

enable multiple forwarders. The protocol reduces control 

overhead and demonstrates high robustness, maintaining a 

delivery ratio of over 90% even when 50% of nodes 

maliciously drop packets. In [5], a Distance Progress based 

Opportunistic Routing (DPOR) is introduced. This hop-by-

hop algorithm uses the Expected Distance Progress (EDP) 

metric for candidate selection. It achieves performance 
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close to that of the optimal method but requires less 

information and has significantly lower execution time.  

In [25], an Energy-Efficient Fuzzy Logic Prediction-based 

Opportunistic Routing (EEFLPOR) protocol is 

introduced for WSNs. This protocol applies a fuzzy 

inference system to forecast future node states, including 

remaining battery life, channel reliability, and transaction 

count, which inform its forwarder selection process. 

 

3. Methods and Materials 

In this section, the proposed 3. The Fuzzy 

Reinforcement Learning Based on Opportunistic Routing 

(FRLOR) method combines Fuzzy Logic Systems and 

Reinforcement Learning (RL) to support Opportunistic 

Routing (OR), aiming to find the optimal path and minimize 

the number of transmissions. This method employs the 

fuzzy system described in this section to address 

uncertainties in wireless networks (e.g., link probability and 

geographical distance). Building upon fuzzy OR, it first 

defines a candidate set for each node. Subsequently, it 

incorporates reinforcement learning to learn optimal 

candidate selection policies over time. In fact, a fuzzy 

system alone functions as a fixed guide that selects suitable 

candidates based on default rules, but it cannot adapt to 

sudden environmental changes (e.g., link outages or 

network traffic). 

The proposed FRLOR framework achieves a tight 

coupling between the Mamdani fuzzy inference system 

(FIS) and the reinforcement learning (RL) paradigm. This 

integration enables real-time handling of wireless 

uncertainty via fuzzy logic while allowing long-term policy 

optimization through experience-driven learning. The core 

mechanism is to embed the FIS output as a core state feature 

within the Markov Decision Process (MDP), ensuring that 

RL decisions are informed by linguistically interpretable 

metrics derived from uncertain network parameters. With 

the inclusion of reinforcement learning, the system operates 

as a smart driver that learns from past mistakes and selects 

shorter, safer routes from the candidate set. The following 

explains the proposed method step by step, focusing first on 

the fuzzy system and then on reinforcement learning. Figure 

1 illustrates the structure of the proposed mechanism in a 

wireless sensor network (WSN).  

 

Figure 1. Proposed method 

As shown in Figure 1, in the first stage, the network and 

environmental parameters are analyzed and provided as 

inputs to the fuzzy inference system. Three key parameters 

— geographical distance, the number of neighboring nodes, 

and link probability — are considered as fuzzy input 

variables. Based on these parameters, the fuzzy system 

evaluates the routing environment and generates a candidate 

set of potential forwarding nodes for opportunistic routing. 

The main objective is to determine the most efficient route 

for data transmission from the source to the destination. 

3.1. Opportunistic routing (OR) system  

In traditional routing, a predetermined number of nodes is 

used to forward packets, thereby effectively determining the 

best path. However, if one of the nodes leaves the path for 

any reason, the entire network becomes disconnected. 

Compared with traditional routing, OR uses a dynamic set 

of candidate nodes, allowing the source node to transmit 

data via multiple alternative paths rather than selecting a 

single fixed node for forwarding.  Its primary objective is to 

minimize the total number of transmissions required for 

end-to-end packet delivery.  In this approach, the 

transmitting node does not designate a specific next-hop 

address. Instead, it identifies a prioritized set of potential 

forwarders based on defined metrics and broadcasts the 

packet to this set. These candidates have priority. If one of 

the priority candidates deviates from the path for any 

reason, the next available candidate assumes control and 

forwards the packet. Designing an appropriate candidate 

selection algorithm reduces the time required to generate a 

candidate set and the number of transmissions between the 

source and destination nodes, thereby improving network 

performance (as illustrated in Figure 2). 
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Figure 2. Opportunistic Routing 

 

3.2.  The structure of the fuzzy system  

The architecture of the proposed approach utilizes a Fuzzy 

Logic Controller (FLC), as referenced in [26]. The general 

structure of this fuzzy system is delineated in the block 

diagram presented in Figure 3. Fuzzy systems are 

characterized by their inherent flexibility and adaptability, 

specifically the capacity to define and configure inference 

rules in a user-defined format. This attribute ensures that the 

FLC provides a robust and suitable metric for the 

methodical selection of candidates. 

 

Figure 3. Diagram of Fuzzy System 

A fuzzy logic system (FLS) comprises several distinct yet 

interconnected modules, as detailed in [26]: 

• Fuzzification Module: This component is responsible 

for transforming crisp (non-fuzzy) input data into 

appropriate fuzzy sets. Essentially, it translates the 

inputs into the linguistic variables required by the 

subsequent inference engine. Common fuzzifier 

methods include the singleton, triangular, and Gaussian 

functions. 

• Inference Engine: Acting as the computational core, 

the inference engine is a program designed to derive 

logical conclusions based on the established rule base. 

The most commonly used types of fuzzy inference 

systems are the Mamdani, Takagi–Sugeno, and Sugeno 

models. 

• Rule Base: Considered the foundational element of any 

fuzzy system, the rule base consists of a set of 'IF–

THEN' linguistic rules. The careful design and 

formulation of these fuzzy rules are critical 

determinants of the controller's effectiveness and 

operational success. 

• Defuzzification Module: The final stage involves 

converting the fuzzy output set back into a single, crisp 

(usable) output value. Its primary function is to identify 

a single representative point that best encapsulates the 

fuzzy system's result. Widely used defuzzification 

techniques include the maximum membership, 

centroid, and weighted average methods. 

In this paper, we use the Mamdani FIS due to its 

interpretability and centroid defuzzification, which yields a 

smooth output and is suitable for candidate ranking. Among 

defuzzification techniques, the centroid method (also 

known as the center-of-gravity method) is among the most 

widely used and accurate. In this method, the final crisp 

output represents the center of gravity of the aggregated 

output membership function [26]. The defuzzified output   is 

calculated as follows: 
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Based on Eq. (1), 𝑓 denotes the output universe of 

discourse, and 𝜇𝑐(𝑓) represents the aggregated membership 

function obtained after rule evaluation and fuzzy inference. 

The numerator ∫ 𝑓. 𝜇𝑐(𝑓) computes the weighted 

contribution of all possible output values, while the 

denominator ∫ 𝜇𝑐(𝑓)𝑑𝑓 normalizes this by the total area 

under the aggregated membership function. The resulting 

crisp value 𝑓∗ is used as the final fuzzy output 𝐹𝑜𝑢𝑡. 

3.3.  Candidate selection in a fuzzy system  

The inputs of the Mamdani fuzzy system include 

geographical distance, the local connection of each node, 

and the link delivery probability. In the candidate selection 

step, the geographical distance parameter is used as an 

important factor in selecting and creating candidate sets. 

Based on this parameter, the distance from all nodes to each 

other and the distance from all nodes to the destination node 

are calculated, and then the neighbors of each node are 

identified. The next parameter is the local connection of 

each node. Since the number of neighbors depends on 

geographical distance, a lower number of neighbors for a 

node does not necessarily indicate that its distance to the 

destination node is smaller than that of other neighboring 

nodes, but rather, a high number of neighbors indicates high 

connectivity, which is beneficial. The third parameter in this 

algorithm is the link delivery probability. Since low 

geographical distance alone is not always a suitable 

parameter for candidate selection, in addition to this 

parameter, we also use the link probability from each node 

to its neighboring nodes. The probability of a link is 

calculated based on the shadowing propagation model, as 

shown in Eq. (2). P(d) represents the received power at 

distance d [27]:  

Based on Eq. (2),  the transmitted power is denoted by 𝑃𝑡, 

while 𝐺𝑡 and 𝐺𝑟 represent the gains of the transmitting and 

receiving antennas, respectively. The parameter L accounts 

for system losses, and λ corresponds to the signal 

wavelength (c/f, with c = 3 × 108 m/s). Additionally, β 

denotes the path loss exponent, and 𝑥𝑑𝛽 is a Gaussian 

random variable with zero mean and standard 

deviation 𝜎𝑑𝛽. A packet is successfully received if the 

received power meets or exceeds the reception threshold, 

RXThresh. In our simulations, we set  𝜎𝑑𝛽=6dbs and β=2.7. 

The Network Simulator (NS-2) [28] was used to conduct the 

experiments, with the relevant simulation parameters 

summarized in Table 1. With a suitable design of fuzzy 

rules, the influence of all these parameters can be integrated 

together. The fuzzy system output is the Candidate 

Selection Metric, which is used to create a candidate set for 

each node. By comparing the fuzzy output on the neighbors, 

priority candidate set is created. The comparison process 

continues until the number of candidates equals the 

maximum candidate number (Max). Then, the priority 

candidate set is arranged for each node. 

Table1. Default values for the shadowing propagation in NS-

2. 

Value Metric 

0.28183815 watt Pt 

3.652*10-10 watt RXThresh 

1.0 Gt, L, Gr 

914*10 6 H f 

The membership functions for the inputs are defined 

as follows: 

• Number of neighbors:  Triangular functions over [0, 

20]. 

o Small: (0, 0, 5) 

o Average: (3, 7, 11) 

o Large: (9, 20, 20) 

• Distance: Triangular over [0, 1200] meters. 

o Low: (0, 0, 450) 

o Average: (350, 750, 1000) 

o High: (900, 1200, 1200) 

• Link Probability: Triangular over [0, 1]. 

o Weak: (0, 0, 0.4) 

o Medium: (0.3, 0.5, 0.7) 

o Strong: (0.6, 1, 1) 

• Output (Candidate Selection Metric): Triangular over 

[0, 1]. 

o Very Bad: (0, 0, 0.2) 

o Bad: (0.15, 0.3, 0.45) 

o Average: (0.4, 0.5, 0.6) 

o Good: (0.55, 0.7, 0.85) 

o Very Good: (0.8, 1, 1) 

These inputs are combined through fuzzy rules to compute 

the candidate selection metric. The system generates 27 

distinct rules, covering all possible combinations of the 

three inputs. Each rule provides a unique mapping of input 

parameters to the output. 

Figure 4 displays the membership function of the link 

probability parameter. In this scheme, the interval of link 

probability is considered within [0, 1].  

 
(1) 

   

f ∗ =
∫ f. μc(f). df

∫ μc(f)df
⁄  

(2)   p(d) = 10 log (RXThresh. L(4π2). dβ

PtGtGrλ2⁄ )+xdβ 
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Figure 4. Membership function for link. 

As depicted in Figure 5, the defuzzification step starts with 

the interpretation of fuzzy outputs resulting from applying 

inference rules to the input variables. These interpreted 

outputs are assigned one of five membership functions: 

“very bad”, “bad”, “average”, “good” and “very good”. The 

output of the fuzzy system refers to the candidate selection 

metric. 

 

 

Figure 5. Membership Function for output 

In this paper, the defined Fuzzy system has three inputs 

geographical distance, the number of neighbors for each 

node, and the link probability. The system output is the 

selection of candidate's metric according to the established 

rules that are shown in Table 2. Table 2 will be updated to 

include explicit weights (default uniform weight of 1.0 for 

all 27 rules, as no differential weighting was used). 

Table 2. Rule Base of FRLOR. 

Number of Neighbors  

Distance 

Link Probability Output of Fuzzy 

system 

Small Low distance Weak link Average 

Small Low distance Average link Very good 

Small Low distance Strong link Very good 

Small Average distance Weak link Bad 

Small Average distance Average link Good 

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
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Small Average distance Strong link Good 

Small High distance Weak link Very bad 

Small High distance Average link Bad 

Small High distance Strong link Average 

Average Low distance Weak link Average 

Average Low distance Average link Good 

Average Low distance Strong link Very good 

Average Average distance Weak link Bad 

Average Average distance Average link Average 

Average Average distance Strong link Good 

Average High distance Weak link Very bad 

Average High distance Average link Bad 

Average High distance Strong link Average 

Large Low distance Weak link Bad 

Large High distance Average link Average 

Large High distance Strong link Good 

Large Average distance Weak link Very bad 

Large Average distance Average link Bad 

Large Average distance Strong link Average 

Large High distance Weak link Very bad 

Large High distance Average link Bad 

Large High distance Strong link Bad 

3.4.  Reinforcement learning  

To overcome the limitations of the static nature of the 

fuzzy system—which, despite its accuracy in uncertainty 

management, cannot respond to dynamic network changes 

(such as link outages or traffic changes)—a reinforcement 

learning framework is integrated into the fuzzy system. 

This combination transforms the candidate selection 

policy from a rule-based approach to an adaptive and 

experience-optimized policy. The main objective is to 

minimize the number of expected transmissions. 

The proposed FRLOR framework establishes an 

integrated, theory-based link between the Mamdani Fuzzy 

Inference System (FIS) and a reinforcement learning 

algorithm. This link is achieved by including the 

defuzzified output of the fuzzy system — denoted by 𝐹𝑜𝑢𝑡 

€ [0, 1] — as a key component in the state vector of the 

Markov Decision Process (MDP). This approach 

combines linguistic rule-based guidance with experience-

based policy optimization. 

Specifically, the fuzzy system processes the numerical 

inputs (geographical distance, number of neighbors, and 

link delivery probability) through the steps of 

fuzzification, rule inference (using the 27 IF-THEN rules 

listed in Table 2 with equal weights), and defuzzification 

by the center of gravity method to produce the candidate 

selection criterion 𝐹𝑜𝑢𝑡. This criterion represents the 

suitability of each node as a forwarder in the form of a 

normalized and linguistically interpretable score (from 

“very bad” to “very good”), and prioritizes nodes that are 

closer to the destination, have stable links, and have 

balanced neighborhood density.  

The steps of implementing the reinforcement learning 

algorithm are detailed below: 

Step 0: Define Markov Decision Process (MDP) 

MDP forms the RL decision framework and is defined as 

(S, A, T, R, γ): 

S (states): The set of environmental states, including fuzzy 

and network information. 

A (actions): A finite set of actions, representing the set of 

selections of a candidate. 

T (s a, s') (transfer function): The probability of 

transitioning from state S to S' with action a, which is 

extracted from the shadowing model. 

R (s, a) (reward): the reward function, representing the 

immediate feedback to the agent for selecting action a in 

state S. The immediate reward for selecting the candidate, 

which encourages the shortest path. 

γ (discount factor): the discount factor, which controls the 

importance of future rewards (γ € [0,1]). We consider it 

(γ=0.9) in this paper. 

This MDP formulation ensures the Markov property. 

Future states and rewards depend only on the current state 

and action, handling uncertainties in wireless Networks 

via fuzzy integration. Unlike traditional OR algorithms, 

this MDP enables RL to learn optimal policies for dynamic 

scenarios. 

Step 1: State Definition 

The initial step in the FRLOR algorithm, within the MDP 

framework, involves defining the state s € S. The state is 
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formulated based on candidate selection (from fuzzy 

logic) and routing conditions to support minimizing the 

number of expected transmissions. Accordingly, the state 

( ts ) is defined in Eq. (3): 

Where: 

𝐹𝑜𝑢𝑡: output of the fuzzy system, which is calculated from 

𝐷𝑔, 𝑁𝑛, 𝐿𝑝 . 

𝐷𝑔: The average geographical distance between each node 

and the candidate set. 

𝑁𝑛: Number of candidate neighbors. 

𝐿𝑝 : Link probability between the current node and its 

neighbors. 

𝑇𝑒: Expected number of transmissions. 

𝐶𝑎: 𝐶𝑎 is candidate capacity. 

This state vector uses the fuzzy output (𝐹𝑜𝑢𝑡) to handle 

uncertain information and is sufficient for shortest-path 

decision-making.  

This mode uses the fuzzy output (𝐹𝑜𝑢𝑡) to handle uncertain 

information, and is sufficient for shortest-path decision-

making.  

Step 2: Action Definition 

In the second step, the agent can take discrete actions to 

modify the fuzzy system’s parameters or routing strategy. 

Defining actions, a € A within the MDP, involves the 

agent's decision to select a candidate that minimizes the 

transmission number. Specifically, 𝑎𝑡€ {1, 2, 3..., n} 

selects from up to n, informed by fuzzy metrics (Table 2). 

The action triggers transitions via T (s, a, s' (.  

Step 3: Reward Definition 

The reward function serves to evaluate the efficacy of the 

agent’s decision in terms of network efficiency and 

Quality of Service (QoS). The multi-objective reward 

function used in FRLOR is defined in Eq. (4): 

Base on Eq. (4), 𝐷 is the network diameter (1200 m), 

𝑁𝑚𝑎𝑥 is the maximum number of neighbors, and 𝑇𝑚𝑖𝑛  
represents the minimal number of transmissions. All 

parameters α, β, ω >0 is weighting parameters. 

This reward encourages: 

✓ selecting nodes closer to the destination. 

✓ choosing neighborhoods with higher availability. 

✓ minimizing the expected number of 

transmissions. 

 

Step 4: Q-Learning Update Rule 

The Q-table maintains a value for all valid (state, action) 

pairs, as shown in Eq. (5) [16]. 

Q(st, at) ← Q(st, at)+ η[rt +ω maxQ(st+1, a′) −
Q(st, at)] 
 

(5) 

 

Based on Eq. (5), where η is the learning rate and 𝜔 =0.9 

is the discount factor, this update allows FRLOR to 

gradually learn which candidates produce the most 

efficient long-term routing paths. 

Step 5: Action Selection 

To balance exploration and exploitation, the action for 

each state is selected according to the ε-greedy strategy. 

Based on Eq. (6), the agent chooses a random candidate 

with probability ε, while with probability 1−𝜀 it selects the 

action that maximizes the current Q-value: 

at={
random candidate ,     with probability ε

arg max  Q(st, at),        with probability 1 − ε 
} 

(6) 

 

Table 3 summarizes the hyperparameters used in the 

Reinforcement Learning module of the proposed model. 

Since the RL component is based on a lightweight tabular 

Q-Learning method, only the parameters relevant to Q-

value updates and the ε-greedy exploration strategy are 

included. The action selection process follows Eq. (6), 

while the Q-value update rule is given in Eq. (5). 

Where: 

 Episode length: 100 steps (one full source-to-sink 

transmission).  

 Exploration: ε-greedy (ε=0.1, decay 0.99/episode).  

 Learning rate (η): 0.1 for Q-value updates. 

 Number of episodes: 1000 (convergence when value 

loss < 0.01 for 50 episodes).  

 Stopping criteria: Early stopping if no improvement in 

average reward over 100 episodes. 

Discount factor (γ): 0.9. 

Table 3: Hyperparameters for RL Training 

Parameter Value 

Episodes 1000 

Episode Length 100 steps 

Exploration ε-greedy (ε=0.1, decay=0.99) 

α, β, ω 0.5, 0.3,0.2 

Learning Rate 0.1 

Discount (γ) 0.9 

Convergence Q-values stabilize for 50 consecutive episodes. 

 

The selected hyperparameters—such as the ε-greedy 

exploration settings  and the learning rates—were 

empirically tuned through iterative testing, although these 

parameters can also be systematically optimized using 

established hyperparameter search techniques such as 

random search or grid search. 

The following section presents the training procedure of 

the proposed FRLOR protocol, where reinforcement 

learning is integrated with the fuzzy-based candidate 

selection mechanism. 

 

(3) st = {Fout, Dg, Nn, Lp, Te, Ca} 

(4) 
rt = α (

1 − Dg

D
⁄ ) + β (

Nn
Nmax

⁄ )

+ ω(1 −
Te

Tmin
⁄ ) 
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Algorithm 1: FRLOR Training Procedure 

Input: environment (NS-2 wrapper), fuzzy system, 

hyperparameters 

Initialize Q-table Q (s, a) ← 0 for all discretized states 

and actions 

for seed = 1 to 100 do 

    set_random_seed(seed) 

    for episode = 1 to MaxEpisodes do 

        s ← env.reset() 

        discretize_state(s) 

        for t = 1 to MaxEpisodeLen do 

            With probability ε, select a random action a 

            otherwise select a = argmax Q(s, a) 

             Execute action  based on Eq. 6 

             Q-value update rule based on Eq. 5 

            If done, then break 

        end for 

        evaluate performance metrics (PDR, delay, energy) 

        if early_stop_condition then break 

    end for 

end for 

Output: optimized Q-table Q* 

 

4. Results 

To rigorously evaluate the FRLOR algorithm, a two-

phase hybrid simulation framework was developed that 

integrates offline computation in Python (for both fuzzy 

candidate ranking and reinforcement learning policy 

optimization) with online packet-level routing in NS-2.34. 

This methodology ensures high-fidelity modeling of both 

intelligent decision-making and realistic wireless 

dynamics. In this section, we compare and examine the 

algorithms under study with the FRLOR algorithm. This 

algorithm is compared with routing algorithms and 

protocols, including POR [24], DPOR [5], and EEFLPOR 

[25], to demonstrate its strong performance. 

 

1. Defined Metrics 

To evaluate the performance of the algorithms, NS-2.34 

[28] was used. In our simulation, we placed nodes in a 

1200×1200 area, similar to the Python environment, 

obtained the candidate set for each node using Python, and 

then applied the candidates in the NS-2 environment. The 

network topology remained the same in both 

environments. A parameter analysis is first presented to 

demonstrate the effects of different parameters on the 

proposed protocol. As noted earlier, the OR protocol 

comprises two key phases: candidate 

selection/prioritization and coordination. In order to 

introduce the set of candidates for each node, the candidate 

set is included in the header of each packet, and we used 

the time-based coordination method to coordinate between 

candidates in all algorithms. In this method, a waiting time 

interval is considered for each candidate, which is 

calculated using Eq. (7) [29]: 

Based on Eq. (7), 𝑇𝐷𝑒𝑓𝑎𝑢𝑙𝑡 is the default waiting time, 

which is considered to be 50 ms here, i refers to the 

candidate number, with values (1, 2, 3..., n). The highest-

priority candidate is the first to submit the packet, and 

there is no waiting time for this candidate. 

To evaluate the performance of the proposed algorithm, 

we study the algorithm in terms of the Expected Number 

of Transmissions (ENT) from source to destination. The 

formula in [15] calculates the ENT. We also consider 

Execution Time, Average End-to-End Delay (E2E Delay), 

Packet Delivery Ratio (PDR), and Energy Efficiency as 

metrics for evaluating protocol performance. 

Average End-to-End Delay: This parameter indicates the 

packet transfer time between the source and destination 

and is actually the sum of all types of delay times from the 

start of packet transmission to the end of the operation 

[29]. This parameter is calculated using the formula given 

in [30]. 

Packet Delivery Ratio (PDR): This parameter calculates 

the network performance based on the ratio between the 

number of packets successfully received by the destination 

and the number of packets sent by the source. The PDR is 

calculated from the formula described in [30]. 

Energy Efficiency: The ratio of the number of packets 

successfully received by the sink or destination to the 

product of the energy consumed by the network to forward 

a packet toward the destination and the number of 

deployed nodes [31-34]. 

 

2. Evaluation metrics 

A. Evaluate the expected number of transmissions 

In order to evaluate this parameter, we distributed the 

nodes in a grid with dimensions of 1200 × 1200. Since the 

main objective of opportunistic routing algorithms is to 

reduce the ENT from source to destination, we considered 

four different scenarios. First, the algorithm was tested 

with different numbers of nodes (200 < N < 400) that were 

randomly placed in the environment, and then the 

algorithm was examined for different sizes of the 

candidate set (candidate set size = 2, 3, 4, 5). 

In Figures 6 and 7, the number of nodes is fixed (N = 200 

and N = 400, respectively), and different numbers of 

candidates are considered. 

 In Figure 6, it can be seen that the POR algorithm shows 

the worst performance than the other algorithms because 

this algorithm only considers the geographical distance, 

while the FRLOR algorithm optimizes the minimum 

number of transmissions better than the others. Of course, 

it should also be noted that increasing the number of 

candidates requires more coordination between them, 

which may cause higher overhead. If there is not perfect 

coordination between them, it may lead to duplicate 

transmissions by other candidates. Since all candidates 

must be listed in the header, increasing the number of 

candidates also increases the size of the packet header. 
(7) Ti = (i − 1) + TDefault 
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In Figure 7, the results were calculated with N =400. In 

this case, the algorithm's behavior with a large number of 

candidates is similar to that of the EEFLPOR and DPOR 

algorithms, with increasing overhead. 

 

 

Figure 6. Evaluate the ENT with a variety of candidates. The case of 200 nodes, varying the number of candidates 

 

Figure 7. The ENT for the case of 400 nodes, varying the number of candidates 

The performance of the proposed FRLOR protocol is 

evaluated in two network configurations, each comprising 

200 or 400 nodes. Figures 6 and 7 depict the ENT as the 

number of forwarding candidates increases. In both 

scenarios, FRLOR consistently achieves the lowest ENT 

compared to EEFLPOR, DPOR, and the baseline POR 

scheme. In the 200-node network, FRLOR reduces the 

average ENT by approximately 20% relative to 

EEFLPOR, 35% relative to DPOR, and 48% compared to 

POR. In the 400-node scenario, FRLOR achieves 

reductions of 27%, 44%, and 56%, respectively. This 

superior performance is attributed to FRLOR’s hybrid 

fuzzy–reinforcement learning mechanism, which 

dynamically selects optimal forwarding candidates and 

minimizes redundant transmissions. Overall, the results 

demonstrate that FRLOR maintains high efficiency and 

scalability, significantly reducing transmission overhead 

and improving routing performance in both small and 

large networks 

. 

B. Execution Time 

This section evaluates the computational overhead 

required to construct the forwarder set. The DPOR 

algorithm incurs the greatest processing time, 

approximately 95 minutes. Expanding the forwarder list 

size directly raises the computational burden. Our 

proposed method achieves lower runtime than DPOR. 

While the POR algorithm is computationally faster than 

DPOR, it yields inferior performance in terms of the 

expected number of transmissions required for delivery. 

The execution time outcomes are depicted in Figure 8. 
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Figure 8. The execution time for the number of candidates=3 

Figure 8 illustrates the execution time of the evaluated 

routing schemes for a fixed candidate size (n_cand = 3) as 

the network scales from 50 to 400 nodes. The proposed 

FRLOR consistently achieves the lowest execution time, 

indicating superior computational efficiency compared to 

EEFLPOR, POR, and DPOR. While EEFLPOR shows 

moderate overhead, POR and, in particular, DPOR exhibit 

rapid increases in processing time as the network becomes 

denser. On average, FRLOR reduces execution time by 

approximately 22% relative to EEFLPOR, 36% compared 

to POR, and 54% compared to DPOR. These results 

confirm the scalability and low complexity of FRLOR, 

making it suitable for real-time, large-scale opportunistic 

routing scenarios. 

C. Packet Delivery Ratio (PDR) 

In Figure 9, algorithm FRLOR achieves the highest 

packet delivery rate among the algorithms. In addition to 

considering distance, this algorithm uses link probabilities 

and each node's neighbor density to select and construct a 

candidate set. The appropriate and accurate design of 

fuzzy rules in the fuzzy system, together with the 

optimization of the candidate set by the reinforcement 

learning algorithm, ensures that all candidate selection 

paradigms work together effectively, thereby creating a 

high-quality candidate set. Consequently, the packet 

delivery rate and reliability of this algorithm are higher 

than those of other algorithms. 

 

Figure 9. Comparisons of PDR with different nodes  

Experimental results in Figure 9 demonstrate the clear 

superiority of FRLOR over EEFLPOR, DPOR, and POR 

across all network densities, assuming the number of 

candidates considered is 5. As shown in Figure 8, FRLOR 

consistently attains the highest PDR, achieving near-

perfect delivery in dense networks. This improvement 

stems from its adaptive forwarder selection and efficient 

link-quality estimation, which enable robust performance 

under both sparse and congested conditions. In contrast, 

the baseline methods exhibit slower scalability and 

reduced reliability, confirming FRLOR’s effectiveness as 

a more stable and efficient opportunistic routing solution. 

D. End-to-End Delay 

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
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This parameter reports the packet transfer time between 

the source and destination and computes the total delay 

from the start of packet transmission to the end of the 

operation. The goal is to minimize this parameter in the 

network. In evaluating this parameter, we considered 

varying numbers of nodes while keeping the number of 

candidates constant. When a source node sends a packet to 

the destination, the appropriate candidate set is identified, 

and the best path for the packet is determined. The graph 

of this parameter is shown in Figure 10. In the FRLOR 

algorithm, selecting an appropriate candidate set enables 

the destination to receive the transmitted packet more 

quickly. As shown, the E2E Delay in the FRLOR 

algorithm is lower than that of other algorithms and yields 

better performance. 

 

Figure 10. Comparisons of End-End Delay with different nodes  

Figure 10 presents the E2E Delay obtained by FRLOR, 

EEFLPOR, DPOR, and POR under different network 

densities. The results indicate that FRLOR consistently 

achieves the lowest delay across all scenarios. As the 

number of nodes increases, FRLOR benefits from its 

adaptive forwarder selection and efficient path 

coordination, reducing the delay from approximately 140 

ms at 100 nodes to nearly 127 ms at 400 nodes. EEFLPOR 

shows the second-best performance. DPOR experiences 

comparatively higher delay and demonstrates limited 

scalability, while POR yields the poorest performance 

with delays exceeding 185 ms even in dense networks. 

Overall, the delay evaluation confirms that FRLOR 

substantially improves transmission efficiency relative to 

existing opportunistic routing schemes. 

E. Energy Consumption 

The energy consumption performance is similar across 

different parameter values and is better than that of others, 

with the lowest energy consumption. The graph of this 

parameter is shown in Figure 11. This is due to the RL-

based framework’s ability to learn from the environment 

and adapt to topological change. 

 

Figure 11. Comparisons of energy with different algorithms 

In Figure 11, the proposed FRLORR algorithm 

demonstrates a clear performance advantage over all 

benchmark schemes. Owing to its intelligent fuzzy–RL 

decision-making mechanism, FRLORR achieves 

significant energy-efficiency improvements, reducing 

energy consumption by up to 47.4% compared to the 

traditional DPOR method and by 50.0% relative to the 

baseline POR scheme. When compared with advanced 

fuzzy-based approaches such as EEFLPOR, FRLOR 

maintains superior performance. 
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5. Conclusion  

This paper presents three parameters, namely the number 

of neighboring nodes, link probability, and geographical 

distance, as inputs to the fuzzy system. The proposed 

algorithm uses these inputs to select the candidate set in 

Opportunistic Routing (OR). Subsequently, 

Reinforcement Learning (RL) in FRLOR improves 

performance by optimizing the candidate selection policy. 

To evaluate the proposed method, we considered the 

following criteria: Expected Number of Transmissions 

(ENT), Energy Consumption, End-to-End Delay (E2E 

Delay), Packet Delivery Ratio (PDR), and Execution 

Time. Overall, FRLOR not only reduces the number of 

transmissions and execution time but also provides a 

robust, data-driven solution for opportunistic routing in 

wireless networks through continuous learning. The future 

development of this research can be extended in multiple 

significant ways. While the present study demonstrates the 

efficacy of FRLOR in reducing transmissions and 

enhancing routing stability, practical validation on real 

medical IoT platforms is required to substantiate these 

findings with real physiological data traffic patterns. 

Additionally, forthcoming research should incorporate 

robust security measures to ensure the confidentiality and 

integrity of sensitive healthcare information shared via 

opportunistic channels. An additional suggestion is the 

automated adjustment of RL hyperparameters via 

structured search methods such as grid search or 

randomized search, which can improve efficacy across 

changing healthcare settings. By incorporating real-world 

implementation, security improvements, and automated 

hyperparameter tuning, the FRLOR framework can 

become a more reliable and scalable option for future 

medical IoT systems. 
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