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Abstract:

In recent years, routing in wireless sensor networks (WSNs) has emerged as a key research
challenge due to the dynamic characteristics and constrained resources of these networks.
Opportunistic Routing (OR) has emerged as an effective model that leverages the broadcast
capabilities of wireless communication to improve network efficiency. The fundamental concept
of OR is to select a suitable candidate subset at each node: upon receiving a packet, only the best
candidate forwards it, while the others discard it, thereby enhancing reliability and minimizing
redundancy. This paper aims to identify the optimal candidate set in opportunistic routing. This
document proposes a new hybrid routing method, FRLOR (Fuzzy Reinforcement Learning-based
Opportunistic Routing), that integrates Fuzzy Logic (FL) and Reinforcement Learning (RL) to
enable smart, dynamic, and adaptive candidate selection in opportunistic routing. The fuzzy
inference system assesses three fundamental input factors—geographical distance, neighbor node
density, and link probability—to identify an initial candidate set. The RL element subsequently
enhances this collection by continuously learning from network feedback and optimizing policies
to select the most effective forwarding nodes. The effectiveness of the proposed FRLOR
technique was assessed and compared with current algorithms, such as EEFLPOR, POR, and
DPOR, using the Expected Number of Transmissions (ENT), Execution Time, End-to-End Delay
(E2E Delay), Packet Delivery Ratio (PDR), and Energy Consumption. Simulation results indicate
that integrating fuzzy reasoning with reinforcement learning substantially improves routing
efficiency and network performance compared with conventional approaches.
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1. Introduction

environments. To enhance network performance and better
utilize their broadcast characteristics, Opportunistic

Wireless networks have become central to everyday life in
the modern era. One important feature of these networks is
their broadcast nature. When a node transmits a packet,
neighboring nodes can detect and receive that transmission.
Routing is a key challenge in wireless networks. In
conventional methods and schemes, a route is first
determined and then used to forward packets [1, 2].
However, conventional routing protocols fail to account for
the natural broadcasting capability of wireless
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Routing (OR) was introduced [3, 4]. OR leverages the
benefits of the wireless environment to improve the
performance. Unlike traditional routing, OR sends a packet
to a group of nodes instead of one specific recipient. The
results in [1] show that OR outperforms other traditional
algorithms. To design OR, three parameters are considered:
how to select forwarders, how to compute a routing metric
for prioritization, and how to coordinate among those
forwarders. Among these, forwarder selection is a principal
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challenge. Each node in the network executes a decision
algorithm and then, based on its output, chooses its
candidates. The objective of this selection process is to
minimize the total transmissions required for successful
packet delivery. Metric calculation, which is necessary to
select and prioritize the candidate set, requires a measure or
standard [5, 6]. Generally, metrics are divided into two
categories: local and end-to-end approaches [7]. A local
metric considers only the local information of neighboring
nodes to send packets. In fact, the choice of the next node is
determined by factors such as link probabilities and node
geographic information. In an end-to-end metric, all node
information and status are considered to determine the
optimal path. Although this method may select the optimal
route, it significantly increases computational cost. The next
parameter in OR is candidate coordination, a mechanism for
detecting the best and highest-priority node. Subsequently,
other nodes in the candidate set discard the packet. Several
coordination methods have been proposed among
candidates, including timer-based, acknowledgment-based,
RTS/CTS, and network coding [8, 9]. One common
candidate coordination method is timer-based. In this
method, each node waits for a preset time; if the node with
the highest ranking fails to transmit the packet, the
subsequent node sends it. In most existing work on OR,
nodes are fixed and do not move within the network. The
aim of opportunistic routing is to reduce the expected
number of transmissions from source to destination, and this
goal can be achieved only by selecting a suitable candidate
set [10, 11]. Given the uncertainty and dynamism of
wireless networks, intelligent mechanisms are needed to
support effective candidate selection. Fuzzy logic is very
useful for modelling uncertainty and imprecision in
complex systems and provides robust decision-making
capabilities in environments with ambiguous or incomplete
information [12, 13].

This paper presents a novel forwarder selection method
utilizing Fuzzy Reinforcement Learning in Opportunistic
Routing (FRLOR). The fuzzy system inputs comprise
geographical distance, link probability, and the number of
neighbors for each candidate node. Reinforcement learning
optimizes the candidate selection strategy based on network
feedback. The paper is organized as follows: in Section 2,
we review prior work; in Section 3, we describe the
proposed algorithm, FRLOR. The proposed algorithm is
compared with other candidate selection algorithms in
Section 4, and Section 5 concludes.

2. Related Work

A core problem in Opportunistic Routing is determining
the set of forwarders [1, 14]. One of the popular candidate
selection algorithms is Extremely Opportunistic Routing
(EXOR) [4]. EXOR applies the ETX metric to select and
prioritize candidates. However, ETX is one of the simplest
metrics and is not highly accurate. In [15], Opportunistic
Any-Path Forwarding introduced a new metric, Expected
Any-Path Transmission (EAX), which was more accurate
than ETX. In [16], a greedy approach that leverages
neighborhood information is employed to enhance network

performance. This paper introduces a method to reduce
beacon size by transmitting a subset of k neighboring data
points within an LDACS time interval. The results
demonstrate improved performance.

In [17], a reusable RL-based routing algorithm for SDN
has been presented. The authors propose RLSR-Routing,
which modifies SARSA and uses Segment Routing to
aggregate actions and apply dual rewards. It demonstrates
improved load balancing and faster convergence than
traditional methods. In [18], an RL-enhanced Epidemic
Routing protocol for OppNets has been introduced. The
method integrates Q-learning and PPO to intelligently select
forwarding neighbors, significantly reducing overhead and
latency while maintaining high delivery rates in resource-
constrained environments. In [19], an Energy-Efficient
Mixture Opportunistic Routing (EMOR) for lunar surface
networks has been proposed. Using an Actor-Critic
architecture and a hybrid table-timer mechanism, it
optimizes delay and energy consumption, greatly extending
network lifetime and improving delivery ratio.

In [20], an Opportunistic Routing using Q-learning with
Context Information (ORQLCI) has been presented. By
integrating node meeting probability and buffer state into
the Q-learning update mechanism, it achieves higher
delivery rates and lower overhead than existing protocols
such as Epidemic and Prophet. The authors of [21] present
a two-layer model for opportunistic networks that integrates
cybersecurity and blockchain concepts. The first layer
introduces a fuzzy logic-based trust protocol (FT-OLSR) to
isolate malicious nodes, while the second layer proposes a
novel routing mechanism. Simulation results demonstrate
that this approach achieves a higher delivery probability, a
lower overhead ratio, and lower latency than established
routing algorithms. The authors in [22] have presented
SROR, a secure and reliable opportunistic routing protocol
for Vehicular Ad Hoc Networks (VANETSs). The method
employs a deep reinforcement learning framework to select
forwarding nodes based on parameters such as relative
speed. It aims to improve packet delivery ratio and reduce
delay while defending against blackhole and gray attacks.
Results show that SROR outperforms existing protocols,
achieving a higher delivery probability and lower latency.
In [14], researchers introduced OptiE2ERL, a model that
uses reinforcement learning to enhance energy efficiency in
the Internet of Vehicles (IoV).

In [23], the authors proposed a new metric, TLG, based on
link quality, geographic location, and remaining energy. In
this algorithm, nodes with the best link quality, the shortest
distance, and suitable energy efficiency are added to the
candidate set. In [24], Position-based Opportunistic Routing
(POR) is proposed for MANETS. It leverages geographic
information and the broadcast nature of wireless channels to
enable multiple forwarders. The protocol reduces control
overhead and demonstrates high robustness, maintaining a
delivery ratio of over 90% even when 50% of nodes
maliciously drop packets. In [5], a Distance Progress based
Opportunistic Routing (DPOR) is introduced. This hop-by-
hop algorithm uses the Expected Distance Progress (EDP)
metric for candidate selection. It achieves performance
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close to that of the optimal method but requires less
information and has significantly lower execution time.

In [25], an Energy-Efficient Fuzzy Logic Prediction-based
Opportunistic ~ Routing  (EEFLPOR)  protocol is
introduced for WSNs. This protocol applies a fuzzy
inference system to forecast future node states, including
remaining battery life, channel reliability, and transaction
count, which inform its forwarder selection process.

3. Methods and Materials

In this section, the proposed 3.  The Fuzzy
Reinforcement Learning Based on Opportunistic Routing
(FRLOR) method combines Fuzzy Logic Systems and
Reinforcement Learning (RL) to support Opportunistic
Routing (OR), aiming to find the optimal path and minimize
the number of transmissions. This method employs the
fuzzy system described in this section to address
uncertainties in wireless networks (e.g., link probability and
geographical distance). Building upon fuzzy OR, it first
defines a candidate set for each node. Subsequently, it
incorporates reinforcement learning to learn optimal

Create
WSN

Select

Candidate

candidate selection policies over time. In fact, a fuzzy
system alone functions as a fixed guide that selects suitable
candidates based on default rules, but it cannot adapt to
sudden environmental changes (e.g., link outages or
network traffic).

The proposed FRLOR framework achieves a tight
coupling between the Mamdani fuzzy inference system
(FIS) and the reinforcement learning (RL) paradigm. This
integration enables real-time handling of wireless
uncertainty via fuzzy logic while allowing long-term policy
optimization through experience-driven learning. The core
mechanism is to embed the FIS output as a core state feature
within the Markov Decision Process (MDP), ensuring that
RL decisions are informed by linguistically interpretable
metrics derived from uncertain network parameters. With
the inclusion of reinforcement learning, the system operates
as a smart driver that learns from past mistakes and selects
shorter, safer routes from the candidate set. The following
explains the proposed method step by step, focusing first on
the fuzzy system and then on reinforcement learning. Figure
1 illustrates the structure of the proposed mechanism in a
wireless sensor network (WSN).

Select Best
Candidate Set

Figure 1. Proposed method

As shown in Figure 1, in the first stage, the network and
environmental parameters are analyzed and provided as
inputs to the fuzzy inference system. Three key parameters
— geographical distance, the number of neighboring nodes,
and link probability — are considered as fuzzy input
variables. Based on these parameters, the fuzzy system
evaluates the routing environment and generates a candidate
set of potential forwarding nodes for opportunistic routing.
The main objective is to determine the most efficient route
for data transmission from the source to the destination.

3.1. Opportunistic routing (OR) system

In traditional routing, a predetermined number of nodes is
used to forward packets, thereby effectively determining the
best path. However, if one of the nodes leaves the path for
any reason, the entire network becomes disconnected.
Compared with traditional routing, OR uses a dynamic set
of candidate nodes, allowing the source node to transmit

data via multiple alternative paths rather than selecting a
single fixed node for forwarding. Its primary objective is to
minimize the total number of transmissions required for
end-to-end packet delivery. In this approach, the
transmitting node does not designate a specific next-hop
address. Instead, it identifies a prioritized set of potential
forwarders based on defined metrics and broadcasts the
packet to this set. These candidates have priority. If one of
the priority candidates deviates from the path for any
reason, the next available candidate assumes control and
forwards the packet. Designing an appropriate candidate
selection algorithm reduces the time required to generate a
candidate set and the number of transmissions between the
source and destination nodes, thereby improving network
performance (as illustrated in Figure 2).
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Figure 2. Opportunistic Routing

3.2. The structure of the fuzzy system

The architecture of the proposed approach utilizes a Fuzzy
Logic Controller (FLC), as referenced in [26]. The general
structure of this fuzzy system is delineated in the block

diagram presented in Figure 3. Fuzzy systems are
characterized by their inherent flexibility and adaptability,
specifically the capacity to define and configure inference
rules in a user-defined format. This attribute ensures that the
FLC provides a robust and suitable metric for the
methodical selection of candidates.

Input Fuzzification Inference Engine

SN Mode

Defuzzification | Qutput
- Mode LS

Rule base

Figure 3. Diagram of Fuzzy System

A fuzzy logic system (FLS) comprises several distinct yet
interconnected modules, as detailed in [26]:

e Fuzzification Module: This component is responsible
for transforming crisp (non-fuzzy) input data into
appropriate fuzzy sets. Essentially, it translates the
inputs into the linguistic variables required by the
subsequent inference engine. Common fuzzifier
methods include the singleton, triangular, and Gaussian
functions.

e Inference Engine: Acting as the computational core,
the inference engine is a program designed to derive
logical conclusions based on the established rule base.
The most commonly used types of fuzzy inference
systems are the Mamdani, Takagi—Sugeno, and Sugeno
models.

e Rule Base: Considered the foundational element of any
fuzzy system, the rule base consists of a set of 'IF—
THEN' linguistic rules. The careful design and
formulation of these fuzzy rules are critical
determinants of the controller's effectiveness and
operational success.

e Defuzzification Module: The final stage involves
converting the fuzzy output set back into a single, crisp
(usable) output value. Its primary function is to identify
a single representative point that best encapsulates the
fuzzy system's result. Widely used defuzzification
techniques include the maximum membership,
centroid, and weighted average methods.

In this paper, we use the Mamdani FIS due to its
interpretability and centroid defuzzification, which yields a
smooth output and is suitable for candidate ranking. Among
defuzzification techniques, the centroid method (also
known as the center-of-gravity method) is among the most
widely used and accurate. In this method, the final crisp
output represents the center of gravity of the aggregated
output membership function [26]. The defuzzified output is
calculated as follows:
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Based on Eq. (1), f denotes the output universe of
discourse, and u.(f) represents the aggregated membership
function obtained after rule evaluation and fuzzy inference.
The numerator [ f.u.(f) computes the weighted
contribution of all possible output values, while the
denominator [ p.(f)df normalizes this by the total area
under the aggregated membership function. The resulting
crisp value f* is used as the final fuzzy output F,,;.

3.3. Candidate selection in a fuzzy system

The inputs of the Mamdani fuzzy system include
geographical distance, the local connection of each node,
and the link delivery probability. In the candidate selection
step, the geographical distance parameter is used as an
important factor in selecting and creating candidate sets.
Based on this parameter, the distance from all nodes to each
other and the distance from all nodes to the destination node
are calculated, and then the neighbors of each node are
identified. The next parameter is the local connection of
each node. Since the number of neighbors depends on
geographical distance, a lower number of neighbors for a
node does not necessarily indicate that its distance to the
destination node is smaller than that of other neighboring
nodes, but rather, a high number of neighbors indicates high
connectivity, which is beneficial. The third parameter in this
algorithm is the link delivery probability. Since low
geographical distance alone is not always a suitable
parameter for candidate selection, in addition to this
parameter, we also use the link probability from each node
to its neighboring nodes. The probability of a link is
calculated based on the shadowing propagation model, as
shown in Eq. (2). P(d) represents the received power at
distance d [27]:

(2)

2) 4B
p(d) = 10 log (RXThresh. L(4m?).d

PthGrAZ)”‘dB

Based on Eq. (2), the transmitted power is denoted by P;,
while G, and G, represent the gains of the transmitting and
receiving antennas, respectively. The parameter L accounts
for system losses, and A corresponds to the signal
wavelength (c/f, with ¢ = 3 x 108 m/s). Additionally, S
denotes the path loss exponent, and x4z is a Gaussian
random variable with zero mean and standard
deviation a4z. A packet is successfully received if the
received power meets or exceeds the reception threshold,
RXThresh. In our simulations, we set g43=6dbs and f=2.7.
The Network Simulator (NS-2) [28] was used to conduct the
experiments, with the relevant simulation parameters
summarized in Table 1. With a suitable design of fuzzy

rules, the influence of all these parameters can be integrated
together. The fuzzy system output is the Candidate
Selection Metric, which is used to create a candidate set for
each node. By comparing the fuzzy output on the neighbors,
priority candidate set is created. The comparison process
continues until the number of candidates equals the
maximum candidate number (Max). Then, the priority
candidate set is arranged for each node.

Tablel. Default values for the shadowing propagation in NS-

2.
Metric Value
P 0.28183815 watt
RXThresh 3.652*10" 0 watt
Gu L, G 1.0
f 914*10°H

The membership functions for the inputs are defined
as follows:

Number of neighbors: Triangular functions over [0,
20].

o Small: (0,0, 5)

o Average: (3,7, 11)

o Large: (9, 20, 20)

Distance: Triangular over [0, 1200] meters.
o Low: (0, 0,450)
o Average: (350, 750, 1000)
o High: (900, 1200, 1200)
Link Probability: Triangular over [0, 1].
o Weak: (0, 0, 0.4)
o Medium: (0.3, 0.5, 0.7)
o Strong: (0.6, 1, 1)
Output (Candidate Selection Metric): Triangular over
[0, 1].
o Very Bad: (0, 0, 0.2)
o Bad: (0.15, 0.3, 0.45)
o Average: (0.4, 0.5, 0.6)
o Good: (0.55, 0.7, 0.85)
o Very Good: (0.8, 1, 1)

These inputs are combined through fuzzy rules to compute
the candidate selection metric. The system generates 27
distinct rules, covering all possible combinations of the
three inputs. Each rule provides a unique mapping of input
parameters to the output.

Figure 4 displays the membership function of the link
probability parameter. In this scheme, the interval of link
probability is considered within [0, 1].



As depicted in Figure 5, the defuzzification step starts with
the interpretation of fuzzy outputs resulting from applying
inference rules to the input variables. These interpreted
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metric.

outputs are assigned one of five membership functions:

In this paper, the defined Fuzzy system has three inputs
geographical distance, the number of neighbors for each
node, and the link probability. The system output is the

Fuzzy Membership Functions for Candidate Evaluation
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selection of candidate's metric according to the established
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Table 2. Rule Base of FRLOR.

10

rules that are shown in Table 2. Table 2 will be updated to
include explicit weights (default uniform weight of 1.0 for
all 27 rules, as no differential weighting was used).

Number of Neighbors Link Probability Output of Fuzzy
Distance system
Small Low distance Weak link Average
Small Low distance Average link Very good
Small Low distance Strong link Very good
Small Average distance Weak link Bad
Small Average distance Average link Good

© 2026 by the authors. Licensee FRAI, Babolsar, Mazandaran. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/deed.en)
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Small Average distance
Small High distance
Small High distance
Small High distance
Average Low distance
Average Low distance
Average Low distance
Average Average distance
Average Average distance
Average Average distance
Average High distance
Average High distance
Average High distance
Large Low distance
Large High distance
Large High distance
Large Average distance
Large Average distance
Large Average distance
Large High distance
Large High distance
Large High distance

3.4. Reinforcement learning

To overcome the limitations of the static nature of the
fuzzy system—which, despite its accuracy in uncertainty
management, cannot respond to dynamic network changes
(such as link outages or traffic changes)—a reinforcement
learning framework is integrated into the fuzzy system.
This combination transforms the candidate selection
policy from a rule-based approach to an adaptive and
experience-optimized policy. The main objective is to
minimize the number of expected transmissions.

The proposed FRLOR framework establishes an
integrated, theory-based link between the Mamdani Fuzzy
Inference System (FIS) and a reinforcement learning
algorithm. This link is achieved by including the
defuzzified output of the fuzzy system — denoted by F,,;
€ [0, 1] — as a key component in the state vector of the
Markov Decision Process (MDP). This approach
combines linguistic rule-based guidance with experience-
based policy optimization.

Specifically, the fuzzy system processes the numerical
inputs (geographical distance, number of neighbors, and
link delivery probability) through the steps of
fuzzification, rule inference (using the 27 IF-THEN rules
listed in Table 2 with equal weights), and defuzzification
by the center of gravity method to produce the candidate
selection criterion F,,,. This criterion represents the
suitability of each node as a forwarder in the form of a
normalized and linguistically interpretable score (from
“very bad” to “very good”), and prioritizes nodes that are
closer to the destination, have stable links, and have
balanced neighborhood density.

Strong link Good
Weak link Very bad
Average link Bad
Strong link Average
Weak link Average
Average link Good
Strong link Very good
Weak link Bad
Average link Average
Strong link Good
Weak link Very bad
Average link Bad
Strong link Average
Weak link Bad
Average link Average
Strong link Good
Weak link Very bad
Average link Bad
Strong link Average
Weak link Very bad
Average link Bad
Strong link Bad

The steps of implementing the reinforcement learning
algorithm are detailed below:

Step 0: Define Markov Decision Process (MDP)

MDP forms the RL decision framework and is defined as
(S! A? T’ R’ Y):

S (states): The set of environmental states, including fuzzy
and network information.

A (actions): A finite set of actions, representing the set of
selections of a candidate.

T (s a, s") (transfer function): The probability of
transitioning from state S to S' with action a, which is
extracted from the shadowing model.

R (s, a) (reward): the reward function, representing the
immediate feedback to the agent for selecting action a in
state S. The immediate reward for selecting the candidate,
which encourages the shortest path.

v (discount factor): the discount factor, which controls the
importance of future rewards (y € [0,1]). We consider it
(y=0.9) in this paper.

This MDP formulation ensures the Markov property.
Future states and rewards depend only on the current state
and action, handling uncertainties in wireless Networks
via fuzzy integration. Unlike traditional OR algorithms,
this MDP enables RL to learn optimal policies for dynamic
scenarios.

Step 1: State Definition

The initial step in the FRLOR algorithm, within the MDP
framework, involves defining the state s € S. The state is
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formulated based on candidate selection (from fuzzy
logic) and routing conditions to support minimizing the
number of expected transmissions. Accordingly, the state
(s;) is defined in Eq. (3):

St = {Fout Dgy Ni, L, Te, Ca } (3)

Where:

Foye: output of the fuzzy system, which is calculated from
Dy, Ny, L, .

D, The average geographical distance between each node
and the candidate set.

N,,: Number of candidate neighbors.

L, : Link probability between the current node and its
neighbors.

T,: Expected number of transmissions.

C,: C, is candidate capacity.

This state vector uses the fuzzy output (F,,.) to handle
uncertain information and is sufficient for shortest-path
decision-making.

This mode uses the fuzzy output (F,,,;) to handle uncertain
information, and is sufficient for shortest-path decision-
making.

Step 2: Action Definition

In the second step, the agent can take discrete actions to
modify the fuzzy system’s parameters or routing strategy.

Defining actions, a € A within the MDP, involves the
agent's decision to select a candidate that minimizes the
transmission number. Specifically, a.€ {1, 2, 3..., n}
selects from up to n, informed by fuzzy metrics (Table 2).
The action triggers transitions via T (s, a, §').

Step 3: Reward Definition

The reward function serves to evaluate the efficacy of the

agent’s decision in terms of network efficiency and
Quality of Service (QoS). The multi-objective reward
function used in FRLOR is defined in Eq. (4):

re=ua (1 - Dg/D) + B(Nn/NmaX) @

+ u)(l - Te/Tmin)

Base on Eq. (4), D is the network diameter (1200 m),
Npax 1S the maximum number of neighbors, and T,
represents the minimal number of transmissions. All
parameters a, 3, ® >0 is weighting parameters.

This reward encourages:

v’ selecting nodes closer to the destination.

v choosing neighborhoods with higher availability.

v" minimizing the expected number of
transmissions.

Step 4: Q-Learning Update Rule

The Q-table maintains a value for all valid (state, action)
pairs, as shown in Eq. (5) [16].

Q(sw ay) < Q(sp ap+ nlry +® maxQ(syyq,a") — )
Q(svap)]

Based on Eq. (5), where 1 is the learning rate and w =0.9

is the discount factor, this update allows FRLOR to
gradually learn which candidates produce the most
efficient long-term routing paths.

Step 5: Action Selection

To balance exploration and exploitation, the action for
each state is selected according to the e-greedy strategy.
Based on Eq. (6), the agent chooses a random candidate
with probability €, while with probability 1—¢ it selects the
action that maximizes the current Q-value:

_{ random candidate, with probability € } 6)
t"largmax Q(sy,a,),  with probability 1 — ¢

Table 3 summarizes the hyperparameters used in the
Reinforcement Learning module of the proposed model.
Since the RL component is based on a lightweight tabular
Q-Learning method, only the parameters relevant to Q-
value updates and the e-greedy exploration strategy are
included. The action selection process follows Eg. (6),
while the Q-value update rule is given in Eq. (5).

Where:

Episode length: 100 steps (one full source-to-sink
transmission).

Exploration: g-greedy (¢=0.1, decay 0.99/episode).
Learning rate (1): 0.1 for Q-value updates.

Number of episodes: 1000 (convergence when value
loss < 0.01 for 50 episodes).

Stopping criteria: Early stopping if no improvement in
average reward over 100 episodes.

Discount factor (y): 0.9.

Table 3: Hyperparameters for RL Training

Parameter Value
Episodes 1000
Episode Length 100 steps
Exploration g-greedy (¢=0.1, decay=0.99)
a, B, o 0.5,0.3,0.2
Learning Rate 0.1
Discount (y) 0.9
Convergence Q-values stabilize for 50 consecutive episodes.

The selected hyperparameters—such as the e-greedy
exploration settings and the learning rates—were
empirically tuned through iterative testing, although these
parameters can also be systematically optimized using
established hyperparameter search techniques such as
random search or grid search.

The following section presents the training procedure of

the proposed FRLOR protocol, where reinforcement
learning is integrated with the fuzzy-based candidate
selection mechanism.
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Algorithm 1: FRLOR Training Procedure
Input: environment (NS-2 wrapper), fuzzy system,
hyperparameters
Initialize Q-table Q (s, a) < 0 for all discretized states
and actions
for seed = 1 to 100 do
set_random_seed(seed)
for episode = 1 to MaxEpisodes do
s «— env.reset()
discretize_state(s)
for t = 1 to MaxEpisodeLen do
With probability ¢, select a random action a
otherwise select a = argmax Q(s, a)
Execute action based on Eq. 6
Q-value update rule based on Eq. 5
If done, then break
end for
evaluate performance metrics (PDR, delay, energy)
if early_stop_condition then break
end for
end for
Output: optimized Q-table Q*

4. Results

To rigorously evaluate the FRLOR algorithm, a two-
phase hybrid simulation framework was developed that
integrates offline computation in Python (for both fuzzy
candidate ranking and reinforcement learning policy
optimization) with online packet-level routing in NS-2.34.
This methodology ensures high-fidelity modeling of both
intelligent decision-making and realistic ~wireless
dynamics. In this section, we compare and examine the
algorithms under study with the FRLOR algorithm. This
algorithm is compared with routing algorithms and
protocols, including POR [24], DPOR [5], and EEFLPOR
[25], to demonstrate its strong performance.

1. Defined Metrics

To evaluate the performance of the algorithms, NS-2.34
[28] was used. In our simulation, we placed nodes in a
1200x1200 area, similar to the Python environment,
obtained the candidate set for each node using Python, and
then applied the candidates in the NS-2 environment. The
network topology remained the same in both
environments. A parameter analysis is first presented to
demonstrate the effects of different parameters on the
proposed protocol. As noted earlier, the OR protocol
comprises two key phases: candidate
selection/prioritization and coordination. In order to
introduce the set of candidates for each node, the candidate
set is included in the header of each packet, and we used
the time-based coordination method to coordinate between
candidates in all algorithms. In this method, a waiting time
interval is considered for each candidate, which is
calculated using Eq. (7) [29]:

T = i-D+ Toefault (7

Based on Eq. (7), Tpefaur is the default waiting time,
which is considered to be 50 ms here, i refers to the
candidate number, with values (1, 2, 3..., n). The highest-
priority candidate is the first to submit the packet, and
there is no waiting time for this candidate.

To evaluate the performance of the proposed algorithm,
we study the algorithm in terms of the Expected Number
of Transmissions (ENT) from source to destination. The
formula in [15] calculates the ENT. We also consider
Execution Time, Average End-to-End Delay (E2E Delay),
Packet Delivery Ratio (PDR), and Energy Efficiency as
metrics for evaluating protocol performance.

Average End-to-End Delay: This parameter indicates the
packet transfer time between the source and destination
and is actually the sum of all types of delay times from the
start of packet transmission to the end of the operation
[29]. This parameter is calculated using the formula given
in [30].

Packet Delivery Ratio (PDR): This parameter calculates
the network performance based on the ratio between the
number of packets successfully received by the destination
and the number of packets sent by the source. The PDR is
calculated from the formula described in [30].

Energy Efficiency: The ratio of the number of packets
successfully received by the sink or destination to the
product of the energy consumed by the network to forward
a packet toward the destination and the number of
deployed nodes [31-34].

2. Evaluation metrics
A. Evaluate the expected number of transmissions

In order to evaluate this parameter, we distributed the
nodes in a grid with dimensions of 1200 x 1200. Since the
main objective of opportunistic routing algorithms is to
reduce the ENT from source to destination, we considered
four different scenarios. First, the algorithm was tested
with different numbers of hodes (200 < N < 400) that were
randomly placed in the environment, and then the
algorithm was examined for different sizes of the
candidate set (candidate set size = 2, 3, 4, 5).

In Figures 6 and 7, the number of nodes is fixed (N = 200
and N = 400, respectively), and different numbers of
candidates are considered.

In Figure 6, it can be seen that the POR algorithm shows
the worst performance than the other algorithms because
this algorithm only considers the geographical distance,
while the FRLOR algorithm optimizes the minimum
number of transmissions better than the others. Of course,
it should also be noted that increasing the number of
candidates requires more coordination between them,
which may cause higher overhead. If there is not perfect
coordination between them, it may lead to duplicate
transmissions by other candidates. Since all candidates
must be listed in the header, increasing the number of
candidates also increases the size of the packet header.
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In Figure 7, the results were calculated with N =400. In
this case, the algorithm's behavior with a large number of
candidates is similar to that of the EEFLPOR and DPOR
algorithms, with increasing overhead.

Figure 6. Evaluate the ENT with a variety of candidates. The case of 200 nodes, varying the number of candidates
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Figure 7. The ENT for the case of 400 nodes, varying the number of candidates

The performance of the proposed FRLOR protocol is
evaluated in two network configurations, each comprising
200 or 400 nodes. Figures 6 and 7 depict the ENT as the
number of forwarding candidates increases. In both
scenarios, FRLOR consistently achieves the lowest ENT
compared to EEFLPOR, DPOR, and the baseline POR
scheme. In the 200-node network, FRLOR reduces the
average ENT by approximately 20% relative to
EEFLPOR, 35% relative to DPOR, and 48% compared to
POR. In the 400-node scenario, FRLOR achieves
reductions of 27%, 44%, and 56%, respectively. This
superior performance is attributed to FRLOR’s hybrid
fuzzy-reinforcement  learning  mechanism,  which
dynamically selects optimal forwarding candidates and
minimizes redundant transmissions. Overall, the results
demonstrate that FRLOR maintains high efficiency and
scalability, significantly reducing transmission overhead
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and improving routing performance in both small and
large networks

B. Execution Time

This section evaluates the computational overhead
required to construct the forwarder set. The DPOR
algorithm incurs the greatest processing time,
approximately 95 minutes. Expanding the forwarder list
size directly raises the computational burden. Our
proposed method achieves lower runtime than DPOR.
While the POR algorithm is computationally faster than
DPOR, it yields inferior performance in terms of the
expected number of transmissions required for delivery.
The execution time outcomes are depicted in Figure 8.
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Execution time for the case ncand = 3
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Figure 8. The execution time for the number of candidates=3

Figure 8 illustrates the execution time of the evaluated
routing schemes for a fixed candidate size (n_cand = 3) as
the network scales from 50 to 400 nodes. The proposed
FRLOR consistently achieves the lowest execution time,
indicating superior computational efficiency compared to
EEFLPOR, POR, and DPOR. While EEFLPOR shows
moderate overhead, POR and, in particular, DPOR exhibit
rapid increases in processing time as the network becomes
denser. On average, FRLOR reduces execution time by
approximately 22% relative to EEFLPOR, 36% compared
to POR, and 54% compared to DPOR. These results
confirm the scalability and low complexity of FRLOR,
making it suitable for real-time, large-scale opportunistic
routing scenarios.

Loo

C. Packet Delivery Ratio (PDR)

In Figure 9, algorithm FRLOR achieves the highest
packet delivery rate among the algorithms. In addition to
considering distance, this algorithm uses link probabilities
and each node's neighbor density to select and construct a
candidate set. The appropriate and accurate design of
fuzzy rules in the fuzzy system, together with the
optimization of the candidate set by the reinforcement
learning algorithm, ensures that all candidate selection
paradigms work together effectively, thereby creating a
high-quality candidate set. Consequently, the packet
delivery rate and reliability of this algorithm are higher
than those of other algorithms.
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Figure 9. Comparisons of PDR with different nodes

Experimental results in Figure 9 demonstrate the clear
superiority of FRLOR over EEFLPOR, DPOR, and POR
across all network densities, assuming the number of
candidates considered is 5. As shown in Figure 8, FRLOR
consistently attains the highest PDR, achieving near-
perfect delivery in dense networks. This improvement
stems from its adaptive forwarder selection and efficient

link-quality estimation, which enable robust performance
under both sparse and congested conditions. In contrast,
the baseline methods exhibit slower scalability and
reduced reliability, confirming FRLOR’s effectiveness as
a more stable and efficient opportunistic routing solution.

D. End-to-End Delay
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This parameter reports the packet transfer time between
the source and destination and computes the total delay
from the start of packet transmission to the end of the
operation. The goal is to minimize this parameter in the
network. In evaluating this parameter, we considered
varying numbers of nodes while keeping the number of
candidates constant. When a source node sends a packet to

the destination, the appropriate candidate set is identified,
210

and the best path for the packet is determined. The graph
of this parameter is shown in Figure 10. In the FRLOR
algorithm, selecting an appropriate candidate set enables
the destination to receive the transmitted packet more
quickly. As shown, the E2E Delay in the FRLOR
algorithm is lower than that of other algorithms and yields
better performance.
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Figure 10. Comparisons of End-End Delay with different nodes

Figure 10 presents the E2E Delay obtained by FRLOR,
EEFLPOR, DPOR, and POR under different network
densities. The results indicate that FRLOR consistently
achieves the lowest delay across all scenarios. As the
number of nodes increases, FRLOR benefits from its
adaptive forwarder selection and efficient path
coordination, reducing the delay from approximately 140
ms at 100 nodes to nearly 127 ms at 400 nodes. EEFLPOR
shows the second-best performance. DPOR experiences
comparatively higher delay and demonstrates limited
scalability, while POR vyields the poorest performance
with delays exceeding 185 ms even in dense networks.

Overall, the delay evaluation confirms that FRLOR
substantially improves transmission efficiency relative to
existing opportunistic routing schemes.

E. Energy Consumption

The energy consumption performance is similar across
different parameter values and is better than that of others,
with the lowest energy consumption. The graph of this
parameter is shown in Figure 11. This is due to the RL-
based framework’s ability to learn from the environment
and adapt to topological change.
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Figure 11. Comparisons of energy with different algorithms

In Figure 11, the proposed FRLORR algorithm
demonstrates a clear performance advantage over all
benchmark schemes. Owing to its intelligent fuzzy-RL
decision-making  mechanism, FRLORR achieves
significant energy-efficiency improvements, reducing
energy consumption by up to 47.4% compared to the
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traditional DPOR method and by 50.0% relative to the
baseline POR scheme. When compared with advanced
fuzzy-based approaches such as EEFLPOR, FRLOR
maintains superior performance.
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5. Conclusion

This paper presents three parameters, namely the number
of neighboring nodes, link probability, and geographical
distance, as inputs to the fuzzy system. The proposed
algorithm uses these inputs to select the candidate set in
Opportunistic Routing (OR). Subsequently,
Reinforcement Learning (RL) in FRLOR improves
performance by optimizing the candidate selection policy.
To evaluate the proposed method, we considered the
following criteria: Expected Number of Transmissions
(ENT), Energy Consumption, End-to-End Delay (E2E
Delay), Packet Delivery Ratio (PDR), and Execution
Time. Overall, FRLOR not only reduces the number of
transmissions and execution time but also provides a
robust, data-driven solution for opportunistic routing in
wireless networks through continuous learning. The future
development of this research can be extended in multiple
significant ways. While the present study demonstrates the
efficacy of FRLOR in reducing transmissions and
enhancing routing stability, practical validation on real
medical IoT platforms is required to substantiate these
findings with real physiological data traffic patterns.
Additionally, forthcoming research should incorporate
robust security measures to ensure the confidentiality and
integrity of sensitive healthcare information shared via
opportunistic channels. An additional suggestion is the
automated adjustment of RL hyperparameters via
structured search methods such as grid search or
randomized search, which can improve efficacy across
changing healthcare settings. By incorporating real-world
implementation, security improvements, and automated
hyperparameter tuning, the FRLOR framework can
become a more reliable and scalable option for future
medical IoT systems.
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